
JoT
 3 (2002) 033

JOURNAL  OF  TURBULENCEJOT
http://jot.iop.org/

Stationary vortices and persistent
turbulence in Karman grooves

Gregory J Balle and Robert E Breidenthal
University of Washington, Seattle, 4617 Sunnyside Avenue N, Seattle,
WA 98103, USA
E-mail: balle@aa.washington.edu

Received 22 April 2002
Published 13 August 2002

Abstract. The vortex persistence theory of turbulence predicts that the
addition of a stationary vortex will reduce the wall fluxes in turbulent flows.
To test the theory, the feasibility of holding a vortex sufficiently stationary
whilst embedded in a turbulent boundary layer is investigated. Potential flow
analysis reveals that the stationarity of the von Karman street of vortices in a
wake might be useful for this purpose. In this scheme, the dividing streamline
of the stationary vortex street would be replaced by a solid wall having the
same wavy shape, which is given by the derived analytical expression for this
streamline. An experimental apparatus with just such a wavy wall was built,
including a corotating array of vortex generators that are able to accurately
position quasi-streamwise vortices near the stationary points of the wavy wall,
i.e. in the ‘Karman grooves’. The secondary flow in the cross-plane perpendicular
to axes of these vortices corresponds geometrically to that of the vortex street.
If the vortices lie exactly upon the geometric stationary points of the Karman
grooves, the vortices are observed to be stationary and in the persistent regime
of turbulent fluxes. Displacing the vortex generator array only slightly yields
different turbulent fluxes. Simple vortex growth measurements provide a
graphic demonstration of the difference between persistent and nonpersistent
(free) vortices. The experimental set-up was then modified to include a wall
heating system and thermocouples to measure the wall heat flux, as a candidate
turbulent flux. Experimental results show that the non-dimensional heat transfer
coefficient, the Nusselt number, is a function of the Reynolds number with
an exponent of ∼0.57 if persistent and ∼0.82 if nonpersistent. The latter is
comparable to the flat plate boundary layer heat flux exponent of ∼0.8, for the
same Reynolds number range, i.e. 104 through 105, and the transition between
the regimes is observed to be a gradual function of vortex location.
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1. Introduction

The persistence theory of turbulence, developed from observations of entrainment rates across
a stratified interface, is used to explain the connection between the stationarity of a vortex and
its influence on turbulent fluxes across the interface [2, 3]. According to the theory, when a
vortex is near an interface, fluxes of scalar quantities at the boundary depend critically upon
the stationarity of the vortex, along with other more well known parameters. For a sufficiently
strong and stationary vortex, theory predicts that the fluxes will be independent of the fine-
scale turbulence. In the limiting case of infinite stratification, i.e. a solid wall, the turbulent
fluxes in the influence of a stationary vortex differ widely from the conventional Reynolds
number dependencies. Embedding such a stationary vortex in a turbulent boundary layer
could theoretically achieve significant reductions in wall heat and momentum transfers, two
mechanisms of acute interest to engineers and fluid dynamicists in many fields. In section 2 we
give more details on the derivation of the persistence theory of turbulence and how it was used
to predict a priori the results of the current experiments. However, the driving motivation of
this research was to build on the previous results, first by finding a suitable means to hold a
vortex stationary near a solid wall and, second by measuring a surface flux, e.g. heat, at the wall
near such stationary vortices. Fuller explanations and ramifications of persistent turbulence can
be found in the cited references.

The passive control mechanism proposed to hold the vortices stationary in this study is the
geometry of the boundary and the vortex array itself. For two-dimensional potential flows with
vortex motion, certain configurations of the vortices exhibit stationary points of the vortex path
function, i.e. the vortices are at rest when located at these points, [1, 15]. These stationary points
can be located near a bounding contour if a suitable streamline is chosen, since in potential flow
any streamline can be replaced with a solid wall. There are no such geometric stationary points
near a flat wall. Further to this, we have discovered that the well known von Karman vortex
street configuration of vortices exhibits the required stationarity properties, and if the dividing
streamline of the street is the chosen bounding contour then the construction of an experimental
apparatus is relatively simple. In section 3, we derive the exact functionality of the dividing
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Figure 1. Schematic of a vortex near a boundary.

streamline, enabling a direct comparison with the commercially available sheets with corrugated
cross-section such as the one used in these experiments.

Section 4 records the two main areas of experimentation that were carried out. First, simple
flow visualization of dyed vortices, located in the Karman grooves, was used as a rudimentary
measure of vortex growth, with varying Reynolds number and persistence. This served to give
an order of magnitude measure and a check to see if indeed there was anything close to the
expected effects taking place. After this had been confirmed, a programme of experimentation for
measuring the wall heat flux for persistent and nonpersistent vortices was pursued. Particularly,
we were looking to collect data that would enable us to quantify the power law dependency
of the Nusselt number, Nu, the non-dimensional heat transfer coefficient, upon the Reynolds
number, Re. That is to say, we wanted to measure α for the relation

Nu ∼ Reα, (1.1)

for both the persistent and nonpersistent turbulence regimes.

2. Persistent turbulence

2.1. Background

Recent experiments on stratified entrainment have revealed an important parameter for turbulent
fluxes at interfaces, the vortex persistence [3]. These experiments show that the entrainment flux
velocity, we, non-dimensionalized by the characteristic velocity scale of the turbulence, w1, is a
function of the stationarity, T , or persistence, of the entraining eddies. So along with the other
more well known parameters, Ri = Richardson number, Pr = Prandtl number, Sc = Schmidt
number, and Re = Reynolds number, we have an entrainment law of the form

we

w1
= f(Re, Ri, Pr, Sc, T ). (2.1)

Such a relationship would be in the spirit of Taylor’s entrainment hypothesis for free turbulent
jets [11]. Since T is a measure of vortex stationarity near an interface, we may define this
persistence parameter using the ratio of two velocities essential to describing the motion of a
vortex near an interface. This ratio is between the translational velocity, V , of the vortex parallel
to the boundary and an appropriate measure of the vortex’s azimuthal velocity, W , e.g. the local
maximum azimuthal velocity (figure 1). The persistence parameter is then simply

T ≡ k
W

V
, (2.2)

where k is some constant of proportionality.
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If the vorticity structure is of such a chaotic nature as to make impossible the measurement
of a representative azimuthal velocity, another scheme would be to use the vortex circulation
(an integral quantity) divided by a discernible vortex cross-axis width. The general idea here
is to recognize the relative importance of the amplitude of the velocity fluctuation due to
the eddy, with respect to its mean motion tangential to the interface. Another point worth
noting here is this: while the azimuthal velocity W is unambiguous to any inertial observer, the
translational component V is that measured by an observer at rest with respect to the interface.
The persistence is thus only well defined for vortices sufficiently near to an interface, such that
they can have an influence on the fluxes there.

Among other discoveries made in the experiments mentioned above was the laboratory
confirmation of atmospheric measurements showing the turbulent entrainment in a stratified
environment to be largely independent of Re and mostly dependent on stratification, Ri.
Furthermore, it was found that when a large-scale eddy is brought to rest at the interface,
i.e. is persistent, this eddy becomes the dominant entrainment mechanism rather than the usual
vortex with eddy Richardson number of unity. In this case, the Ri dependency for the non-
dimensionalized entrainment rate changes by a full exponent, i.e.

we

w1
∼ Ri−

3
2

for nonpersistent turbulence and
we

w1
∼ Ri−

1
2

for persistent turbulence. This successfully explains the seemingly counterintuitive result that
a turbulent jet impinging upon a stratified interface produces more entrainment when it is held
steady, with its axis perpendicular to the interface, than when it is directed at an angle and/or
precessed around [4].

In the current study we are interested in measuring effects in the limiting case of very large
Richardson number, Ri � 1, where stratification drops out of the problem as the interface
effectively becomes flat, e.g. a solid wall. We hypothesize, though, that the dependency upon
vortex stationarity still holds in this limit [3], where the entrainment, and thus the turbulent
fluxes, are dependent upon Re.

2.2. Persistence in the limit Ri � 1

We may explain this in the following way: fluxes due to a turbulent spectrum near a rigid
interface can be given by a surface renewal theory, where mass (via porous diffusion) or another
scalar of interest diffuses across the interface and is swept away by eddies of some scale. From
dimensional considerations, an effective flux velocity, we, is seen to be proportional to the square
root of the ratio of the diffusivity, D, divided by a vortex rotation time, i.e.

we =
(

D
Tλ

) 1
2

, (2.3)

where Tλ is the time scale of the rate-limiting eddy in the turbulent cascade. For turbulence
with a Kolomogorov spectrum interacting with a solid wall, this time scale is either that of the
smallest eddies of length scale λ0, or that of the largest with length scale δ.

To explain why this should be so, we use the facts that the Kolmogorov eddy (the smallest
in the spectrum) has an eddy Reynolds number of 1 and that the flow of energy through the
cascade is independent of length scale. From these facts, the ratios of the largest to smallest
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length and time scales are then related to the turbulence Reynolds number, Reδ, by the following
relations:

δ

λ0
= Re

3
4
δ , (2.4)

Tδ

Tλ0

= Re
1
2
δ . (2.5)

At large Reynolds numbers the contrast between the largest and smallest eddies becomes obvious.
The largest eddies are efficient at transporting large fluid elements large distances as δ � λ0,
while the smallest eddies are effective at rapidly generating new surface area as Tλ0 � Tδ. The
intervening inertial subrange merely provides the conduit for transporting a measured scalar to
the molecularly mixed interface, wherever it may be located.

When the largest eddies in the spectrum are brought to rest at the interface, i.e. T � 1,
the time scale of the rate-limiting eddy will be that of these stationary vortices, i.e. Tδ, and the
entrainment is said to be in a persistent regime. Conversely, when T ≤ O(1), the time scale of
the smallest eddy will be the rate-limiting step, i.e. Tλ0 , and the entrainment is said to be in
the nonpersistent regime. Physically speaking, while the large-scale eddies persist in the same
location, i.e. are stationary, the small scales are ‘starved’ of new fluids to mix at the molecular
scale; conversely, when the large scales are ‘foraging’ along the interface entraining at a much
greater rate, the entrained fluid must wait for the smallest eddies to create new interfacial surface
area before molecular mixing can occur. In the first case, the overall turbulent flux (entrainment
plus mixing) is rate-limited by the time scale of the large, persistent vortices doing the entraining,
and in the latter case it is rate-limited by the time scale of the smallest (Kolmogorov) eddies
doing the molecular mixing.

With all other factors held constant, e.g. Pr, Sc, and Ri, the difference in the effective flux
velocity dependence upon Re at a solid wall between persistent and nonpersistent turbulence is
found by simply taking the ratio of the two regimes,

weN

weP

=
[

Tδ

Tλ0

] 1
2

= Re
1
4
δ , (2.6)

where subscript N denotes nonpersistent and P persistent. So for any turbulent transfers of
a measured scalar of interest we can expect the ratio between the persistent and nonpersistent
cases to depend on Reynolds number in this way. In this investigation we are measuring the
turbulent heat transfer at a solid wall. Given that this is a process governed largely by the
eddy cascade mechanism, we could then expect the non-dimensional heat transfer to obey a
functionally similar relationship to that above, i.e.

NuN

NuP
∼ Re

1
4
δ , (2.7)

NuN being the Nusselt number for nonpersistent regimes and NuP the Nusselt number for
persistent turbulence. This relationship has the reasonable requirement that turbulent heat
transfer is a linear function of the effective flux velocity due to the turbulence, in both cases. In
section 4.3 we discuss further how the entrainment flux velocity is related to heat transfer for
persistent and nonpersistent regimes.

3. Stationary vortices and the Karman vortex street

3.1. Stationary vortex points

In two-dimensional flow analysis the notion of a vortex centroid has been made quite concrete
by [15] and others. However, in three dimensions it is not so clear, although a local plane
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perpendicular to the vortex lines will possess a local centroid of sorts. For this study we are
dealing with mostly axial vortices, perhaps slightly helical, and so a two-dimensional vortex
centroid is a useful concept, particularly the motion of the vortices’ centroids and their stationary
points.

With a suitably defined centroid it is possible to treat a region where the vorticity is
distributed in patches, homogeneously or inhomogeneously, as if the whole of the vorticity acted
as one entity, analogous to the grouping of mass points about one ‘centre of mass’ in Newtonian
mechanics. This is most useful when considering the exchanges of momentum, and moment
of momentum, between the region in consideration and external influences. This is done using
Kelvin’s methods [6], whereby the properties of impulsive momentum and impulsive moment of
momentum can be attributed to the vortex, in the instantaneously equivalent steady flow, so
that force and torque calculations can then be performed with the vortex as if it were a solid
body interacting with the fluid and its boundaries.

In this way a region of fluid where the vorticity is scattered, but contained within a
definite boundary such as in a turbulent flow field, can be treated as if it behaved like one, or
perhaps a few, large-scale vortices. This approach is still somewhat valid in three-dimensional
turbulence as the smaller scales tend towards isotropic vorticity direction distributions, which
cancels out their net reactions for a large enough volume. The large scales are observed to align
into anisotropic structures, with definable axes and something like a centroid in local planes
perpendicular to these axes. In this light, the turbulence can be treated as identifiable large-
scale vortex structures, within which lies a continuous cascade of many scales of eddy size, as is
the assumption in ‘large-eddy simulation’ Navier–Stokes numerical schemes. With this as our
context, it is worthwhile to ask the relatively simple question, discounting all the other numerous
complexities of the turbulent motion, ‘What are the trajectories of the large-scale vortices?’

Furthermore, with the persistence theory predicting a fundamental change in turbulent
fluxes with stationary large-scale vortices it is also important to know which configurations
of the large scales are stationary, i.e. at rest with respect to boundaries, to the first order of
approximation. These questions can be answered quite confidently for many two-dimensional
flow situations, using the familiar mathematics of complex potential theory with introduced axial
point vortices. Quite simply, for a given complex potential F (z), with accompanying velocity
field dF/dz, a vortex is stationary wherever

dF

dz

∣∣∣∣
z=zv

= 0, (3.1)

zv being the location of the vortex. When the calculation of equation (3.1) is carried out it should
be remembered that contributions to the induced velocity at zv from the vortex in consideration
are zero, as a vortex does not induce velocity upon itself except through images.

In the parlance of phase plane analysis, the stationary points of the vortex path function
are the fixed points or ‘centres’ of the motion and the resulting vortex motion is then due to the
vortices orbiting these centres or at rest when located at them. This in itself is a useful result as it
enables a locally linearized analysis, using a centre manifold theorem with the vortex stationary
points comprising the centres, to be used on the problem of the vortex motion. Superimposed
upon this motion is the induced velocity field that is consistent with the vortices themselves.
It is also worth noting that the integrated pressure forces exerted on the boundary, due to the
motion of the vortices, vanish whenever the vortices are located at the stationary points, as can
be shown using the Blasius force law of complex analysis.

There are many configurations of axial vortices that are stationary, perhaps the most simple
being that of a single vortex located at the centre of a circular streamline [1]. This suggests
that many simple closed contours, with a net circulation in the interior, will contain within
them a stationary point of the vortex path function, as many simple closed contours, and thus
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Figure 2. Vortices in the wake of a cylinder; the ‘Karman vortex street’ [17].

their interior flow fields, can be mapped to the unit circle using the familiar conformal maps of
complex variable analysis.

Another class of vortex flows exhibiting stationary points are those associated with
unbounded periodic arrays of vortices, the most simple of which is the stationary single row
of equidistant vortices extending to infinity, the mathematical idealization of Lord Rayleigh’s
well known plane vortex stratum (the planar shear layer), containing within it Kelvin’s ‘cat’s-
eyes’ vortices [7]. Then there is the double row of vortices, where each row has an opposite
sense of rotation, this being a mathematical idealization for jets and wakes [10]. A well-studied
stationary configuration for the double-row array is where the vortices of one row lie adjacent
to the midpoint between the vortices of the other row, commonly known as the ‘von Karman
vortex street.’

3.2. Karman’s stationary vortex street

Many studies, [5, 8, 12, 16] to name but a few, have explored this flow (figure 2), particularly the
question of the absolute two-dimensional stability, in cases including viscous fluids and finite-
diameter vortices. von Karman’s result for infinitesimal line vortices in an irrotational fluid
yields the simple mathematical relationship governing the dimensions of what he called the
stable array,

sinh
πh

a
= 1, (3.2)

with useful alternate forms

cosh
πh

a
=

√
2 and

h

a
=

ln(1 +
√

2)
π

,

where h is the distance between the staggered rows of vortices and a is the distance between
adjacent vortices in a row. An analysis by [10] expands and verifies this result; however, later
Liupanov-type approaches in [9] and others call into question the absolute stability. Although
the wealth of mathematical stability analyses performed on this flow state are informative, they
are not necessary in identifying that the von Karman vortex street is indeed a stationary solution
of the vortex motion. Also, the growth of the instabilities seems to be intimately linked with
the growth of the vortices themselves in turbulent wakes [13, 14], and the underlying stationary
solution would seem to play an integral role in determining the size of the instabilities.

Given that we know an array of vortices with the spacing geometry of equation (3.2)
is stationary, we propose to use one row of this configuration as a mechanism to embed a
corotating array of stationary vortices within a turbulent, solid-wall boundary layer, this being
a prerequisite for achieving a persistent regime of turbulence near the solid-wall interface, as
described in section 2. The most obvious streamline to chose as our solid wall would then be the
dividing streamline of the street (see bold curve in figure 3); this is mathematically identical to
having an image system of vortices positioned relative to the physical vortices so as to complete
the stationary Karman street.
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Figure 3. Streamlines of the Karman vortex street, dividing streamline in bold.

In this set-up, the largest component of the freestream flow is parallel with the axes of the
vortices, although it is necessary to have precisely the right component perpendicular to the
axes, to bring the vortices to rest with respect to the wavy wall (as explained in section 3.3).
The resulting experimental rig, with the dividing streamline of the Karman street as its cross-
section, is then simply a grooved plate with a corotating vortex generator array positioned at
the upstream end of the Karman grooves. For the vortices to be stationary the vortex generators
need to be positioned precisely so that the resulting tip vortices lie in the centre of the grooves
and on the plane tangent to the centre of the grooves and on the plane tangent to the ridges,
not really down in the hollows. Again, see figure 3 for the locations of the stationary vortices.

3.3. Dividing streamline of Karman vortex street

In order to construct an apparatus having Karman grooves, it was necessary to calculate the
shape function of the dividing streamline of the Karman vortex street. The complex potential
for the vortex street with vortices of strength Γ is given by

F (z) = − iΓ
2π

[
ln

(
sin

π

a

(
z − i

h

2

))
− ln

(
sin

π

a

(
z − a

2
+ i

h

2

))]
. (3.3)

This result is derived from an infinite array of counter-rotating vortices as outlined in, for
example [15]. However, the potential given above has the origin shifted from being located
at a singularity; this avoids problems associated with the conjugate mapping dealing with an
asymmetrically positioned array, the conjugate mapping being an implicit part of streamfunction
calculations. Using the sine sums of angles formula this can be expanded and then we collect
terms inside a single log function as follows:

F (z) = − iΓ
2π

ln
[
A1 + iB1

A2 + iB2

]
,

where

A1 = cosh
π

a

(
y − h

2

)
sin

πx

a
, B1 = sinh

π

a

(
y − h

2

)
cos

πx

a
,

A2 = cosh
π

a

(
y +

h

2

)
sin

π

a

(
x − a

2

)
, B2 = sinh

π

a

(
y +

h

2

)
cos

π

a

(
x − a

2

)
.
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Now, we get the streamfunction for the vortex street, Ψ, in a compact form by using
iΨ = 1

2 [F (z) − F ∗(z)] [1]:

Ψ(x, y) = − Γ
4π

ln
[
A2

1 + B2
1

A2
2 + B2

2

]
= − Γ

2π
ln

R1

R2
, (3.4)

where

R2
1 = A2

1 + B2
1 = sinh2 π

a

(
y − h

2

)
+ sin2 π

a
x,

R2
2 = A2

2 + B2
2 = sinh2 π

a

(
y +

h

2

)
+ cos2

π

a
x.

As an aside, we can use a similar method to obtain an expression for the potential function of
x and y. It is the conjugate harmonic function of the stream function and is comprised of an
orthogonal family of curves, given by

Φ(x, y) =
1
2
[F (z) + F ∗(z)] =

Γ
2π

(Θ1 − Θ2), (3.5)

where

tan Θ1 =
B1

A1
=

tanh π
a (y − h

2 )
tan πx

a

, tan Θ2 =
B2

A2
=

tanh π
a (y + h

2 )
tan π

a (x − a
2 )

,

plotted as the dotted curves on figure 3.
The dividing streamline has Ψ = 0 and can be derived from equation (3.4) to give the

implicit expression in x and y for any aspect ratio of the street,

cos
2πx

a
+ sinh

πh

a
sinh

2πy

a
= 0.

The Karman condition for a stationary array, i.e. sinh πh
a = 1, may then be used to obtain the

dividing streamline for the stationary array as the remarkably simple expression

cos
2πx

a
+ sinh

2πy

a
= 0, (3.6)

which can also be written explicitly for y as

y =
a

2π
ln

[√
1 + cos2

2πx

a
− cos

2πx

a

]
. (3.7)

Note that this is a purely geometric relationship, independent of the circulation strength of the
vortices. We have plotted this relation in bold on the same graph with a plot of the streamlines
and potential function, see figure 3. This then is the shape of the boundary required to bring
the vortices to rest when located at the stationary points of the vortex path function and our
experimental apparatus should have a shape cross-section as close as possible to this.

There is one further piece to the puzzle that should be noted. By examining the velocity of
translation of any one of the vortices of the street, with respect to the fluid at rest at infinity, it
is seen that the whole street moves with a velocity

Ustreet =
Γ
2a

tanh
πh

a
. (3.8)

Therefore, in order to bring to rest the complete vortex street, with respect to the plate, we need
to introduce a cross-flow component by yawing the plate relative to the freestream such that
this component cancels exactly the velocity of propagation given in equation (3.8), see figure 4.
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inf.U

street-U

inf.U

street

Figure 4. Schematic of the Karman grooved plate with stationary vortices and
freestream cross-flow component due to plate yaw.

Figure 5. Photograph of experimental apparatus.

The exact velocity component is found by substituting the Karman condition for the stationary
street into equation (3.8), so the cross-flow velocity must be set equal to

Ustreet =
Γ

2
√

2a
. (3.9)

In this way the vortex motion and accompanying induced velocity field are consistent with the
freestream motion and the boundary being at rest in the laboratory frame.

4. Experiments

4.1. Apparatus

A photograph of the experimental apparatus is shown in figure 5. The major components seen
are the corrugated metal sheet and the corotating array of vortex generators mounted upon a
translatable sliding mechanism on the left (upstream); this in turn is mounted on a short leading
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Figure 6. Plot of actual and theoretical shape cross-sections, 1/2 wavelength
shown.

edge plate. With this arrangement, the initial vortex position relative to the stationary point
could be adjusted. Not seen in the photograph is the heater mounted to the backside of the
plate, encapsulated in insulating foam. This apparatus was submerged in a water tunnel with
70 cm × 70 cm cross-section, a maximum flow speed of 70 cm s−1, and background turbulence
level less than 0.2%.

Fortuitously, a conventional prefabricated sheet of corrugated roofing material with an
aspect ratio of the corrugations very close to the Karman condition was found to be available. It
is an old standard with dimensions a = 22/3 inches (67.73 mm) by h = 3/4 inches (19.05 mm)
yielding h/a = 0.2812 (versus h/a = 0.2805 for the theoretical value from equation (3.2)), the
new standard being shallower to save material. The actual shape of the corrugated surface is
approximately equal to the shape of the dividing streamline of the Karman vortex street, given
by equation (3.6). In figure 6 we have plotted the shape of one-half wavelength of the actual
surface taken from measurements with a dial micrometer, along with the actual calculated shape
of equation (3.7).

The vortex generators (VGs) were of a simple half-delta wing type; these are very similar
to those used for ‘energizing the boundary layer’ to delay high angle of attack separation in
aerospace applications. The VG array could be translated as one and the angle of attack of the
VGs was also adjustable in situ via a screw mechanism. The circulation generated by a single
such delta wing device can be estimated from thin airfoil theory found in the standard texts,

Γ = παLUinf , (4.1)

where Γ = circulation, Uinf = freestream velocity, L = length scale of the wing, and α is the
local angle of attack of the wing. The angle of attack, α, is made up of the flow component due
to the angle of the VG relative to the plate plus a component due to the yaw angle of the plate,

α = αpl + αvg. (4.2)

So that the vortices are at rest in the reference frame of the plate, the yaw angle of the
plate must be related to the freestream velocity by

sin αpl =
Ustreet

Uinf
. (4.3)
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Q

Figure 7. Schematic of plate heating system and translatable vortices.

Recall that the circulation is related to the velocity of the street through equation (3.9). With
the spanwise length scale of the VG being set equal to h, the amplitude of the wavy wall, we can
be sure that the tip vortex of the delta wing is close to the stationary point height associated
with the wall. Also, this leads to the simple expression relating αpl to αvg for small yaw angles
of the plate where sinαpl ≈ αpl,

αvg =
(

2
√

2
ln(1 +

√
2)

− 1
)

αpl, (4.4)

using equations (3.9)–(4.2), and the Karman condition. We must keep in mind here that since
the VGs are attached with their span perpendicular to the wall, they are partially submerged
within the wall boundary layer and so cannot be expected to generate exactly the lift, and
hence circulation, that one would expect from an unbounded wing. For all the heat transfer
measurements presented in this paper, αpl = 5◦ and αvg ≈ 10◦.

The heater component was of a silicone strip type capable of producing 1.55 W cm−2 and
was affixed to the backside (the side opposite the vortex flow) of the plate. See figure 7 for
a schematic of a cross-section of the apparatus depicting heater element and adjustable vortex
position. Surrounding this heater was a 3–4 cm thick layer of insulating foam ensuring that
the bulk of the heat transfer was through the plate and into the external flow of interest. This
heating system was able to provide up to 10 ◦C difference between the wall temperature and the
ambient water temperature. A system of thermocouples for measuring wall temperature was
attached to surface of the plate, along the central line in the valley of one of the grooves. A
separate thermocouple measured ambient temperature of the water tunnel; these thermocouples
have an accuracy of ±0.003 ◦C.

4.2. Turbulent vortex growth

With the apparatus submerged in a water tunnel, dye was bled into the flow near the apex of
the vortex generators to visualize the path and width of the vortex. This was done using both
LIF (laser induced fluorescence) type dye and regular vegetable dye with strong backlighting.
Digital video camera photography allowed for an analysis of many good quality still frames (up
to 30 s−1) and a variable electronic shutter speed enabled a rudimentary averaging over the
small-scale fluctuations.

The envelope of the dye was taken as proportional to the vortex growth and measured for
several flow speeds. Since the dye traces particle paths rather than streamlines, we are measuring
only the envelope of the dye location rather than attempting to track individual vortex lines. In
this way we expect to garner some approximate information on the size of the vortex at different
downstream locations. Figure 8 is a representative photograph of the comparison between a
vortex with a cross-plane position near the stationary point of a Karman groove (bottom photo)
and an identical vortex (same vortex circulation and flow speed) adjacent to a flat plate (top
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Figure 8. Plan view of dye-traced vortices; flat plate (top), grooved (bottom).
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Figure 9. Non-dimensional plot of vortex width versus downstream distance;
Rea ≈ 7100.

photo). In the figure the Reynolds number was about 7100 based on plate wavelength, a, and
the same length of plate is displayed in each case.

As is evident in figure 8, the growth of instabilities, hence the growth of the vortex itself,
in the flat plate case far exceeds that of the vortex in the Karman grooves case, for the length
of plate of interest. This was shown to be the same for the several other flow speeds observed
and it was concluded that the behaviour of these vortices, when placed near a boundary with
a such a geometry, is qualitatively different from that of the vortex near a flat wall. To the
accuracy of these basic measurements, the growth of the vortices is also quantitatively different,
as is evidenced by figure 9; this shows the vortex width versus downstream distance, both non-
dimensionalized by plate wavelength. This width corresponds to the envelope of the dye traces
in the photographs of figure 8 for the flat plate and for the grooved one.
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Figure 10. Change in ∆T due to stationary vortices, Rea ≈ 22 500.

4.3. Turbulent fluxes

With the experimental confirmation that these vortices behave qualitatively differently than
those near a flat plate, the next step involved measuring a turbulent flux at the surface for both
a nonstationary and a stationary vortex. This, according to the theory, should give rise to a
difference in the turbulent flux regimes, with the difference between persistent and nonpersistent
regimes being a predictable factor. To observe this difference we chose to measure the heat flux
at the surface of the Karman grooves plate for the two regimes. The apparatus for generating and
measuring a temperature difference between the grooved plate and the external flow is described
in section 4.1.

With the temperature difference comes a convected heat transfer; the local flux of this
transfer may be expressed using Newton’s law of cooling,

qx = hx(Ts − T∞), (4.5)

where qx = local heat flux, hx = local convection coefficient, T∞ = temperature of external flow,
and Ts = temperature of the surface. The local flux is derived by applying Fourier’s law to the
fluid at the wall, i.e.

qx = −kf
∂T

∂y

∣∣∣∣
y=0

, (4.6)

where kf is the conductivity of the fluid. Combining equations (4.5) and (4.6) yields

hx =
−kf∂T/∂y|y=0

Ts − T∞
. (4.7)

The Nusselt number of non-dimensionalized heat transfer, based on downstream distance, x, is
then obtained using hx, kf , and x,

Nux =
hxx

kf
. (4.8)
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Figure 11. Change in ∆T due to stationary vortices (as percentage of case
without vortices).

The Nusselt number may also be written as a function of we. To do this we begin with a
dimensional argument for the heat flux:

qx

∆T
= ρCpwe, (4.9)

where ρ = mass density of the fluid, Cp = specific heat capacity, and ∆T = Ts − T∞; we then
use equation (4.5) to get hx = ρCpwe and so

Nux =
ρCpwex

kf
. (4.10)

The ratio of nonpersistent heat transfer to persistent heat transfer is then simply
NuN

NuP
=

weN

weP
= Re

1
4
δ , (4.11)

since all other factors are constant, and this provides the promised explanation of equation (2.7).
With our heater generating close to homogeneous 0.62 W cm−2 (operating at 40% power

levels) the heat flux is actually independent of x, i.e. qx ≈ const. This means that hx from
equation (4.7) is dependent only upon the surface-water temperature difference, ∆T . What we
are really interested in here then is the change in ∆T , when we have the persistent vortices and
when we do not. So, first we plot ∆T for these two cases to demonstrate the radical change
taking place in the heat transfer due to the introduction of the vortices.

Figure 10 shows ∆T as a function of downstream difference, plotted at a representative flow
speed. The upper curve is for the case when the persistent vortices are present, the lower is when
they are not. Remarkably, although in accordance with the theory, the surface-water temperature
difference increases with the introduction of the stationary vortices. At the downstream location
of about 6 wavelengths this trend is lost; the change in the trend is consistent with where the
vortices were seen to leave the stationary location and rapidly grow (within 1–2 wavelengths).
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Figure 12. Power law exponent for Nux versus Rex as function of vortex position.

Also note that as a percentage, the case with the vortices has up to a 50% increase in temperature
difference over the case without the vortices.

In figure 11 we plot the percentage increase in temperature difference for various flow speeds,
i.e. we plot

∆T vg − ∆Tnovg

∆Tnovg
versus

x

a
, (4.12)

where ∆T vg denotes temperature difference for persistent vortices and ∆Tnovg the case with no
vortices. On this plot we have also eliminated the points downstream of the location where the
vortices are observed to leave the stationary location.

We next gathered data measuring the temperature difference and with use of equation (4.8)
evaluated the slope of log–log plots of Nux versus Rex. This slope gives us the exponent of
equation (1.1), α, and it was calculated for various positions of the VG as it was moved across
the location of the stationary point. Figure 12 shows the Nux versus Rex exponent plotted
for each position of the VG. Clearly, there is a marked change in the heat transfer properties
as the vortex is moved a relatively small distance (less than one-third of a wavelength), and
the power law exponent achieves a minimum at the point when the vortex is located closest to
the stationary point. When the vortex is moved away from the stationary point, the turbulent
transfers approach the expected power law of a ‘free’ nonpersistent turbulent boundary layer (α
is about 0.8 for this range of Re).

Interestingly, we see an asymmetry in figure 12 which indicates that the persistent turbulent
regime collapses more rapidly when the vortex is moved in one direction than in the other. This
is consistent with the fact that the induced velocity field of a vortex translated away from
a stationary point will not be symmetric. The vortex path is similarly unsymmetric: if the
vortex begins to one side of the stationary point, the vortex path is down and back towards the
stationary point; if it begins the other side, the vortex path is up and out into the free stream.
The direction of asymmetry in the data is consistent with this notion and the actual rotational
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Figure 13. Log Nux versus log Rex for persistent and nonpersistent turbulence.

sense of the vortex. Figure 12 also raises the question of what could give rise to the second
minimum of heat transfer that occurs at around 1/5 of a wavelength from the stationary point.
Perhaps (and this is mere speculation) a stationary helical mode of the vortex could trigger
another regime of persistence.

Experimentally, we were able to achieve stationary vortices for numerous αvg and αpl

combinations. Further to this though, we wanted to find the power law difference, as described in
equation (2.7). For this we needed a dimensionally similar nonpersistent case for comparison, and
the flat plate case is geometrically fundamentally different from a wavy wall. Clearly, for a good
comparison between persistent and nonpersistent turbulent fluxes the only thing that should be
varied is the persistence parameter, which can be achieved by varying only the initial location
of the vortices. Figure 12 shows that the transition between the persistent and nonpersistent
regimes is rather gradual and for this reason we chose a position sufficiently far away from the
persistent ‘sweet spot’ so that a good comparison could be made.

Figure 13 shows the results of the comparison. Log Nux is plotted versus log Rex for the
two cases, persistent and nonpersistent. A least squares best fit for straight lines puts the slope
of the upper line (nonpersistent) at 0.8293 and that of the lower line (persistent) at 0.5752.
This is in accordance with the decline in turbulent fluxes by an order of Re

1
4 expected from

equation (2.7), since 0.8293 − 0.5752 = 0.2541 ≈ 1/4.

5. Conclusions

In this paper we have described a new method for the control of turbulent wall fluxes. Vortices
placed at stationary points near a wavy wall were shown to affect the turbulent flux of heat at
the surface. According to the theory of vortex persistence, the wall flux under such stationary
vortices should enter the persistent regime of turbulent fluxes and decline by a factor of Re

1
4 ,

compared to the nonpersistent case. Preliminary experimental measurements were in accordance
with the theory. We have also shown that the fluxes are a strong function of the vortex’s initial
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position relative to the stationary points. Future work might include the determination of the
threshold vortex strength and further investigation of the stationarity characteristics required
to achieve the persistent regime of turbulent fluxes.
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