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MELT PRODUCTIVITY AND RHEOLOGY:
COMPLEMENTARY INFLUENCES ON THE
PROGRESS OF MELTING

S. A. Barboza and G. W. Bergantz
Department of Geological Sciences, University of Washington, Box 351310,
Seattle, Washington 98159, USA

The binary-eutectic model of pkase change limits the application of continuum-mixture
simulations to particular systemns. We present a phase-change model that allows systems with
more complex phase relations to be addressed. The model includes multiple invariant points,
which yield a nonlinear production of melt as a function of temperature. A constitutive
relation based on the hybrid model for viscosity and permeability is used to account for
transport behavior as a function of the local melt fraction. Results are reported of two series
of simulations, one utilizing the new two-invariant-point model and the other using a
one-invariant-point model. The comparison demonstrates that the efficiency of convective
heat transport can be increased by over 200% in the two-invariant-point case. The total
kinetic energy for the two-invariant-point system is typically 2 orders of magnitude greater.
This comparison highlights the important link between melt productivity and the
constitutive relations and illustrates the necessity of accurately modeling the variation of
melt fraction with temperature in partially molten systems.

INTRODUCTION

The equations governing the transport of heat and mass in solid-liquid
phase-change systems require thermodynamic functions that link the enthalpy and
mixture composition to the local melt fraction [1]. Previous studies have utilized a
binary-eutectic phase diagram with a single invariant point and solid solution
between the components of the system to provide the necessary equations [2-4).
However, the phase-change systematics of naturally occurring rock compositions
are typically more complex. As an example, experimental studies have shown that,
as long as feldspar (a tectosilicate) is not a limiting reactant, some rock composi-
tions may exhibit large increases in melt fraction with increasing temperature as
the solidi of the phyllosilicates are exceeded [5]. This nonlinear melt production
may have a significant influence on heat and mass transfer, as the constitutive
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NOMENCLATURE
p heat capacity at constant pressure of BT coefficient of thermal expansion of
constituent a, J/kg K constituent @, 1/K
C,C?%  solute concentration in the mixture v® mass of constituent a per unit volume
and in constituent a, respectively, of constituent a, kg/m3
dimensionless r permeability switching function,
D diffusion coefficient of constituent dimensionless
a,m?/s & flux ratio, dimensionless
f° mass fraction of constituent a, f#, 1*  mixture viscosity and viscosity
dimensionless of constituent a,
g" volume fraction of constituent a, respectively, Pa s
dimensionless p mass of mixture per unit volume of
&i ith component of gravitational the mixture, kg/m?
acceleration, m /s’ p° mass of constituent a per unit volume
k thermal conductivity, J /(s m K) of the mixture, kg/m®
K; ith component of anisotropic L) viscosity switching function,
permeability, m? dimensionless
L specific latent heat, J /K
P static pressure or isotropic stress of
the mixture, Pa Subscript
t time, s
T temperature, °C 0 reference value
vf ith component of mixture velocity of
constituent a, m/s
V ith partial volume of the compu- Superscripts
tational domain, m3
Bé coefficient of solutal expansion of ! liquid phase
constituent a, 1 /K 5 solid phase

equations for the mixture depend explicitly on the melt fraction. However, the
effect of the interdependence of melt production and the constitutive equations on
heat and mass transfer is poorly understood.

We present a continuum-mixture model for binary systems with two invariant
points—a eutectic and a peritectic. Notable features of the numerical study include
variable viscosity, rheological switching functions, and melting of a natural rock
composition. The example simulations illustrate that the dynamics of heat and
mass transport in systems with multiple invariant points differ significantly from
that of binary-eutectic systems. Caution is thus urged in applying the results of
continuum simulations utilizing binary-eutectic phase-change models to systems
with more complex phase relations.

CONTINUUM MODEL

This study adopts the two-phase mixture formulation developed by Bennon
and Incropera [1]. The interested reader is directed to Prakash and Voller [3] and
Bennon and Incropera [1] for a complete derivation and a discussion of the model
assumptions. We include additional terms in the governing equations that account
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for the variation of mixture viscosity as a function of temperature, concentration,
and solid fraction. Only the final form of the dimensional equations is presented
here. The variable-viscosity forms of the mixture continuum-conservation equa-
tions for phase change and convection in two dimensions are

Iy;
—— =0 1
ax;
d d ap J p oy; p du; !
—(pv) + —(prp) = —— + — W= = ——
at dx; ax; ax; p dx; p 9x; dx;

i
+ ghvig BT — Ty) + BL(C! = €] - 2= (fD)

(2)
] ] d (k oT Laf'  (ch-c}) a
— —(ppTN)=—| ——| - p— = 2P P (FT
5P+ 5 Coul) é'x,-[cfy ax,.] P TP PAVACRIR)
2 (00 + 2 (p00) = [ o0 2E) + 2| oL - 0
at P 9x; puLI = ax; of ax; ax; of ax;
- i[ pr,(C' = O] 4)
ax; !

The influence of the microscopic geometry on macroscopic transport is
modeled by semi-empirical source terms incorporated with the governing equa-
tions. For example, the last term on the right-hand side of the momentum
conservation expression, Eq. (2), accounts for the viscous forces exerted by the
solid phase on the percolating interstitial fluid. The mixture pressure is defined so
as to include only the pressure changes that result from the impetus to fluid
motion caused by the body force and dilatation due to relative motion between the
mixture constituents. The hydrostatic contribution to pressure is incorporated with
the buoyancy source term, which accounts for the density variations with tempera-
ture and composition gradients. The magnitudes of these density changes are given
by the size of the thermal ( 8 and compositional ( 8}) expansion coefficients. The
method used in determining these coefficients is discussed by Barboza and Bergantz
[6].

The source terms that appear in the energy and solute conservation expres-
sions, Egs. (3} and (4), account for the enthalpy to temperature relations and the
difference between the diffusion of components through the solid and the liquid,
respectively. Compositional diffusion in the solid is taken to be neglible relative to
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that in the liquid in this analysis. A complete derivation of all of the governing
equations and source terms is given by Prakash and Voller [3] and Bennon and
Incropera [1].

In this model formulation, many of the source terms and variables are,
themselves, a function of the local melt fraction. However, there is no universal
agreement on the most appropriate constitutive relations that span the full range
of melt fraction [7]. At low melt fraction, the melt flows within a rigid solid matrix
whose velocity is either fixed (static phase change) or prescribed to be that of free
body translation (continuous phase change) [1]. At high melt fraction, bulk viscous
flow of the mixture occurs, and there is no relative motion between the melt and
the suspended solids. We use the model of Oldenburg and Spera [4], in which
arctangent switching functions are employed to shift between the end-member
constitutive relations at a stipulated critical melt fraction (CMF). An illustration of
this rheological model is shown in Figure 1.

This study assumes the CMF is an abrupt transition in the rheology of the
system. At low melt fraction the rheology is that of a static solid with a percolating
interstitial melt, while above the CMF it is of a fluid with suspended solids. Several
studies have indicated a CMF of approximately 0.5 for some silicate systems [8, 9].
However, it is important to acknowledge recent experiments, which indicate that
the notion of a distinct CMF requires substantial revision for geological systems
undergoing partial melting [10, 11]. Barboza and Bergantz [6] adopted a ramped
switching function, where the transition between the end-member transport types
was initiated at the CMF to recognize these results. This approach is not adopted
here because an abrupt rheological transition better illustrates the influence of the
thermodynamics of phase change on the dynamics of the system.

The rheological switching functions are incorporated directly into the rela-
tions for permeability and the mixture viscosity. The permeability is related to the
local melt fraction by the Blake-Kozeny-Carman equation [12]. The melt viscosity is
calculated by the Shaw model [13], and the influence of suspensions is modeled by
the Krieger and Dougherty relation [14]). The permeability and viscosity relations

Figure 1. Schematic diagram of the rheo-
logical model. The base of a sequence of
metasedimentary rocks is held at a con-
stant temperature. Heat transfer to the
sequence initiates partial melting and
gives rise to double-diffusive convection
of the mixture. Where the fraction of
Unmelted rock melt exceeds the critical melt fraction
{CMF), bulk viscous flow of the partially
Regionof porousflow  molten mixture occurs. The suspended
«——— CMFP solids increase the bulk-mixture viscosity.
Region of viscous flow ~~ Where the fraction of melt is less than
the CMF, the solid is assumed to form a

—Contact between

o«

g
( Heated boundary ) partially moltenrock  Static-rigid matrix through which the melt
and heated strip flows.
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Figure 2. Plot of the kinematic viscosity of the mixture
(heavy solid line) and the melt (thin solid line). The
permeability (dashed line) is also shown. For f' > 0.5
the switching function ensures that viscous drag be-
tween the mixture constituents is negligible relative to
the body force. The influence of suspensions in the
melt on the mixture viscosity is modeled by the Krieger
and Dougherty relation [14], For f' < 0.5 the perme-
ability is related to the porosity by the Blake-Kozeny-
Carman equation [12], and the mixture viscosity is that
of the melt as calculated by the Shaw model [13].

along with their associated switching functions are

] 3
K =TK, (f—)z (5)

1-f

1 —-10
r= [0.5 +— arctan[100( £, —f’)]) 6)
1-f10\]7°
MRCJU=F—¢(fL #(T,C) Q)
1

¢=05-;ammnpmmgh—ﬂﬂ (8)

The model rheological functions are iliustrated in Figure 2.

PHASE DIAGRAM

The material chosen for the example calculations is a natural metasedimen-
tary rock composition rich in phyllosilicate minerals (metapelite) whose predomi-
nant major element composition is within the system KFMASH (Si0,-Al,0;-
MgO-FeO-K,0-H,0). The exact composition and mineralogy are described by
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Vielzeuf and Holloway [5]. A metapelite was chosen because of its importance in
the earth sciences as a potential source of granitic melt [15]. One notable melting
feature of this pelite composition is that it exhibits large jumps in melt fraction at
two invariant points. The phase relations were experimentally derived by Patifio
Douce and Johnston [16] using their own data along with those of Vielzeuf and
Holloway [5] and Le Breton and Thompson [17]. .

The temperatures and compositions of the melts produced in the experiments
and the deduced invariant points were projected onto a pseudobinary to derive the
model binary phase diagram. The justification, methodology, and assumptions
involved in making this projection are provided elsewhere [6, 18]. One should note,
however, that the following two-invariant-point phase diagram is easily adapted to
any two-invariant-point binary system. Some important geological examples include
the systems Mg,Si0,-Si0O, (forsterite-silica), KAISi,0,-SiO, (leucite-silica), and
NaAlSiO,-NaAlSi, Oy (nepheline-albite).

Closure of the governing equaticns requires additional relations that link the
mixture enthalpy and composition to the melt fraction {1]. This information is
obtained by assuming local thermodynamic equilibrium and consulting the phase
diagram. Note that macroscopic disequilibrium is not precluded even though local
equilibrium is assumed. The procedure for deriving the lever-rule expressions for
binary-eutectic systems has been discussed elsewhere {3]. However, numerous
additional mathematical relations are required owing to the additional complexity
with the presence of a second invariant point (the peritectic). Qur approach was to
divide the temperature-composition (7-X') space of the phase diagram into regions.
The numbered regions are illustrated on the schematic of the two-invariant-point
binary shown in Figure 3. The associated terminology and equilibrium lever-rule
expressions are listed in Table 1, and Table 2 lists the values of the various
constants. Separate univariant (solidus and liquidus) lines with different slopes
were assigned to each T-X region. For example, in Figure 3, Tlgs the liquidus curve
in region 5.

The parameters required to fix the geometry of the regions were obtained by
fitting the experimental variation of melt fraction with temperature [5] to that
predicted by the model. The fit between the model predictions and the experimen-
tal observations is illustrated in Figure 4. Although the geometry of this model is
considerably more complex than that of previous phase diagrams, we attempted to
maintain consistency with previously used terminology as much as possible [3].
Note, however, that much of the adopted terminology no longer has a meaningful
physical interpretation and the constants should be regarded only as geometric
parameters that define the position of the phase diagram in 7-X space.

One complication with this approach is the thermodynamics of the system at
the invariant points. Specifically, accounting for the transport of heat in phase-
change systems requires careful consideration of the consumption or release of
latent heat. However, stipulating a constant temperature and accounting for the
latent heat exchange at the invariant points renders a discontinuity in the tempera-
ture field and results in difficult numerical instabilities. Our solution was to allow
the system to change a few degrees in temperature during invariant-point phase
change (Figure 3). This permits the use of lever-rule-type expressions to account
for the variation of melt fraction with enthalpy exchange. This approach properly
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Tm2

Tm1

Temperature
17
3

Tint

Composition

Figure 3. Schematic of the two-invariant-point binary
phase diagram. The parameters in italics listed along the
temperature and composition axis fix the geometry of the
univariant lines in temperature-composition (7T-X} space.
The values of these parameters are either constant (Table
2) or prescribed by linking functions (Table 1). The
linking functions ensure that there is a smooth transition
between univariant lines in each of the T-X regions. The
T-X regions are defined by the intervals between the
temperature parameters and are indicated by the num-
bers printed in bold along the temperature axis. These
numbers correspond to the 7-X regions listed in Table 1.
I1 and I2 indicate the eutectic and peritectic, respectively.
The formulae specifying the slope of the univariant lines
(Tlgs, Tsls, etc.) ae given in Table 1.

accounts for the latent heat of fusion, yet prevents discontinuities in the tempera-
ture field, An illustration of the geometry of the phase diagram in the vicinity of
the eutectic and peritectic (I1 and 12) is shown in Figure 3.

Care must also be taken to ensure a smooth transition between each of the
univariant lines for the separate regions. Discontinuities in any of the liquidus or
solidus lines for the overall phase diagram will result in numerical instabilities and
difficulty in obtaining a converged solution. In other words, the univariant lines for
adjacent regions must precisely intersect at the prescribed temperature and compo-
sition where the transition between the T7-X regions occurs. Expressions are
therefore required to link the univariant lines from the different regions. The
required expressions for the model phase diagram are provided in Table 1.
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Figure 4. Plot of the melt productivity

10 - T ——— for both invariant-pqint cases. Solid line

’ Y 2imarianporn | LHUStrates the variation of melt fraction

5 08 - o Experimenicma|  With temperature of the two-invariant-
B point system, and the dashed line is that
E 0.6 - e of the one-invariant-point system. The
E 04 4 ‘. circles are the experimental data used to
- g ~ derive the geometry of the two-
= 02 4 i X invariant-point phase diagram. The melt
0.0 . . ; productivity of the one-invariant-point
1350 1150 950 750 system was constructed so that both sys-

tems had the same melt fraction at the
Temperature (°C) contact temperature (T, p,pct)-

NUMERICAL SOLUTION

The governing equations, Egs. (1)-(4), are in a form similar to the standard
governing equations for single-phase systems, and any established numerical proce-
dure may be employed to solve them. The methodology used in this study is that of
the control volume formulation [19]. The PHOENICS algorithm [20] was employed
to carry out the solution of the governing equations, and the mass fractions were
updated iteratively, following the procedures outlined by Prakash and Voller [3].
Details of the numerical procedures and aspects of the particular application of the
PHOENICS algorithm have been provided elsewhere [3, 18]. The major differences
between the previous studies and this one are that this study includes (1) tempera-
ture, composition, and melt fraction dependent viscosity; (2) a new two-invariant-
point phase diagram; (3) more precise accounting for enthalpy exchange at the
invariant points; (4) switching functions for the permeability and viscosity following
Oldenburg and Spera [4]; (5) melting from below, rather than solidification from
the side; and (6) melting of a natural rock composition.

EXAMPLE PROBLEM

We consider the progress of melting of a sequence of metapelitic rocks in a
two-dimensional, 200 m X 200 m computational domain heated from below (Figure
5). This configuration was chosen because it is suspected to be important in the
generation of some classes of igneous rocks [15]. The results are then compared
with the melting of a hypothetical material that possesses identical thermophysical
properties but whose melting relations are best characterized by a binary eutectic.
The equilibrium melt fraction versus temperature curves for the pelite and the
hypothetical binary material are shown in Figure 4. The heated strip was 100 m in
width and long enough that the important features of the convection could be
captured in two dimensions. The computational domain was oriented such that the
right wall was normal to, and intersected the center of the heated strip (Figure 5).
A 60 X 60 graded grid, slightly biased in both dimensions toward the heated strip,
was employed. A grid refinement study was undertaken to ensure that the solutions
were independent of spatial and temporal discretization.

The simulations used a set of conditions characteristic of the melting of
crustal rock in analogous geological systems. Justification for these conaditions is
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provided by Barboza and and Bergantz [6]. At time ¢ = 0 the temperature along
the heated strip was elevated to a value of T,,,,.. This contact temperature was
maintained throughout the duration of the simulations. All other boundaries are
thermally insulated. No-slip boundary conditions were employed on the left wall,
roof, and floor, and free-slip conditions were proscribed on the right wall. A
summary of the various model parameters used in the simulations is given in Table
2 and Figure 5.

Bennon and Incropera [2] and Oldenburg and Spera [21] have argued
cogently that the variable composition and the irregular time-dependent geometry
of a melting front precludes a meaningful set of scales. Moreover, the additional
dependence of the transport mechanism on the local melt fraction and the strongly
variable viscosity considered here significantly increases the scaling complexity.
However, a scaling investigation is unnecessary to demonstrate the influence of
complex melting relations on the dynamics of melt movement and the progress of
melting.

For the purpose of normalizing the results, we assume that the total duration
of the simulations (approximately 160 years) reflects a reasonable characteristic
time over which a constant temperature contact may be maintained in analogous
geological systems, The perturbation period thus provides a useful timescale with
which to generalize the results. We acknowledge the ad hoc nature of this choice of
scales. However, there is same geological justification for using the stated period as
a basis for characteristic scales. A horizontal intrusion (sill) of mafic magma
beneath a sequence of metasedimentary rocks is thought to have a role in the
generation of some igneous rocks [15]. This configuration is also analogous to the
system under consideration in this study. A simple calculation shows that the total
enthalpy absorbed by the one-invariant-point model would require the heat re-
leased from the cooling and solidification of an underlying sill of mafic magma that
was approximately 100 m thick. This sill thickness has been shown to be character-
istic in several important geological systems, including those resembling that under
consideration here [22, 23]. Accordingly, we define the nondimensional time to be

= — )

where ¢, is the total time duration of the simulations (5 X 10° s).

The thermal and dynamical state of the one- and two-invariant-point systems
at ¢* = 0.2 is shown in Figures 6a and 6b, respectively. The progression of the
style of convection was similar in both cases. Convection was initially characterized
by numerous small convection cells over the heated strip. The wavelength of the
initial instabilities as defined by the separation of the upwellings was approximately
20-25 m. As the cavity aspect ratio grew, certain cells grew at the expense of others
until convection was dominated by a single counterclockwise rotating convection
cell.

The temporal evolution of convective style proceeded much more rapidly in
the two-invariant-point case. As a result, higher convective velocities, a more
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Table 2. Values of various constants

Parameter Value

Thermophysical and rheological properties

Specific heat, J /(kg K) 1.04 x 10°
Thermal conductivity, W /(m K} 1.9

Density, kg/m? 2.507 x 10°
Kinematic viscosity, m? /s see text
Schmidt number ( &' /D) 1.0 X 10°
Latent heat, J /kg 1.0 x 10%
Permeability coefficient, m? 5.56 x 10~ 19
Thermal expansion coefficient, K™ 1.05 x 1074
Solutal expansion coefficient 1.55 x 107!
Critical melt fraction 0.5

Initial and boundary conditions

Pelite starting composition 0.325
Initial temperature, °C 600.0
Contact temperature, °C 1000.0
Total time duration of simulations, s 5% 10°

Phase diagram parameters (see also Table 1)

™1,°C 1250
T™?2,°C 1600
Tg,°C Tel — ¢
Tel,°C 700

Te2, °C 860

Cel 0.873
Ce2 kpd - Cit
Cpsl 0.1
Cps2 0.0

kpl 0.35
kp2 0.999
kp3 0.0001
kp4 0.999

g, °C 100

T, °C 860

X
60 x 60 grid. Biasing in
x and y toward the heated
strip

Figure §. Schematic of computational
domain.
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rapidly propagating temperature perturbation, and more efficient melt generation
were observed than in the one-invariant-point system. This is evident in Figure 6,
where it can be seen that the height of the convecting cavity (defined by the CMF)
in the two-invariant-point case (Figure 65) had propagated nearly 3 times farther
than in the one-invariant-point case (Figure 64). In addition, convection in the
two-invariant-point case is fully developed (i.e., a single counterclockwise rotating
cell) at the selected time, whereas five convection cells are still evident in the
single-invariant-point case.

The enhanced convection in the two-invariant-point system resulted from the
fact that more melt was generated at lower temperatures. Owing to the elevated
low-temperature melt productivity, the two-invariant-point system exceeded the
CMF approximately 100°C lower in temperature than the one-invariant-point case
(Figure 4). Bulk viscous flow of the mixture consequently occurred earlier in the
course of the simulations and was more vigorous in the two-invariant-point case.
Since the buoyant porous flow of melt is an inefficient mechanism for transporting
heat in this system [6], any reduction in convective vigor of the mixture may have a
substantial impact on heat transport and the progress of melting.

The increase in convective vigor concomitant with the increase in melt
productivity is further illustrated in Figures 7 and 8. Figure 7 depicts the evolution
of the flux ratio () as a function of time in the one- and two-invariant-point
systems. We define ¢ as the ratio of the transient instantaneous average heat flux
across the heated strip measured in a convection simulation relative to that

() dins pajeay
aAoqe Sy

200.0 150.0 1000 50.0 00

Distance from center
of heated strip (m)

®)

Figure 6. The mixture velocity (arrows) and temperature (con-
tours in °C) of the two models at 1* = 0.2: (a) one- and (b)
two-invariant-point system, respectively. The CMF (f' = 0.5)
approximately bounds the limits of significant convection in
both plots.
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g

Thermal flux ratio ()
=
\ &
: \S |
I}
v

Figure 7. Plot of the flux ratio ().
Subscripts indicate the one- and two-in-
10999 variant-point simulation results. R? val-
ues on the chart indicate the statistical
goodness-of-fit of the curves to the data.
807 Variability in the data is attributed to
B, s time-dependent irregularities in the
-7 5 growth of the solidus front. The decay in
00 02 04 06 08 1.0 Tatt® =09 results from the decrease in
the temperature gradient due to sidewall
t* heating.

-

predicted by conduction alone. The & is thus analogous to the Nusselt number
(Nu), which is often used to characterize the efficiency of convection for steady
state convective heat transport problems. The variability in the instantaneous heat
flux in the convection simulations resulted in some scatter in &, This observation is
consistent with other experiments and simulations where such irregularities have
been attributed to the unsystematic time-dependent nature of the solidus front
growth rate [2). Accordingly, the plots in Figures 7 and 8 are best fits to the
measured data. Statistical data regarding the goodness of fit are provided with the
figures.

At r* = (0.2, coincident with the example simulation shown in Figure 6,
& = 3.625 in the two-invariant-point case. At the same time, ©# = 1.603 in the
one-invariant-point case. The efficiency of convective heat transport, as measured
by &, was elevated by approximately 225% owing to the enhanced low-temperature
melt productivity in the two-invariant-point case. The increased efficiency is also
illustrated by the ratio of 4 in the two-invariant-point case to that of the
one-invariant-point case (&#,/,), depicted in Figure 7. The ratio 8,/8, growsto a
high of 4.962 at t* = 0.88, then begins to decay. The decay in ¥ beginning at
t* = 0.9 was due to thermal interaction of the temperature perturbation with the
insulated walls. The simulations indicate that heat transport between the two
systems will continuously diverge until the temperature gradient begins to de-
crease, when the temperature perturbation preceding the convective upwelling
reaches the roof of the computational domain.

10

2

" Figure 8. Plot of the ratio of the global
; 10 kinetic energy (KE} of the two-invariant-
1Y point system to that of the one-
= invariant-point system. High values at
o ¢ low t* indicate that convection in the
= two-invariant-point case initiated earlier
Q 10 than in the one-invariant-point case. In-

creasing decay at ¢* =09 is due to
00 02 04 06 08 1.0  gyeya) heating in the two-invariant-
t* point case.
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Numerous experiments of natural convection in enclosures have been con-
ducted that have resulted in several empirical equations relating the steady state
thermal Rayleigh number (Ra,) to an instantaneous average Nu. The experiments
most relevant to the present study are those of Chu and Hickox [24], who
considered natural convection with strongly variable viscosity and an analogous
geometry. Chu and Hickox [24] observe that

—0.035
ﬁ] 10)

Nu,, = 0.54(Ram)0'25[
Hp

where the subscripts m, o, and h indicate that the properties are measured at the
mean, upper surface, or heated strip temperatures, respectively. It is a simple
matter to ignore density change as a function of composition, calculate Ra,, and
use the empirical relation given in Eq. (10) to predict Nu. However, such calcula-
tions yield a value of Nu that is approximately an order of magnitude higher than
the observed 3. The major differences between the systems are the latent heat
exchange and the buoyancy resulting from compositional gradients. We observed
that the compositional Ra (Ra_) was the same order of magnitude as Ra, and that
the density variation resulting from the composition gradient was opposite to that
of the temperature gradient. To test the influence of double-diffusive effects, we
conducted a series of simulations in which Ra_ was set to zero. In this analysis, ¢
was found to closely correspond with Nu obtained from Eq. (10) despite the various
differences between the studies, We conclude that, in this system, double-diffusive
convection gives rise to more sluggish heat transfer than would be expected from
an analysis based on the temperature gradients alone.

Figure 8 illustrates the relative difference in the increase in the global kinetic
energy (KE). The global KE was defined as

Y KE, = 1pV;(v} + u?) (11)

where V,, v;, and u; indicate the partial volume, vertical velocity, and horizontal
velocity of the ith control volume, respectively. The global KE was calculated by
summing the KE for the control volumes over the computational domain. The data
in Figure 8 were obtained by taking the ratio of the global KE for the two-in-
variant-point case to that of the one-invariant-point case. The KE ratio decayed
from an initial high value of approximately 10* at ¢* = 0.05 exponentially, ap-
proaching a value of approximately 10? asymptotically. At ¢* = 0.9 the KE ratto
began to decay again, corresponding with the decay in ¥ previously discussed. The
high initial values of the KE ratio at low ¢* are attributed to the two-invariant-point
system initiating convection earlier than in the one-invariant-point case. The
asymptotic decay to a value exceeding 1 indicates that, all else being equal,
convective vigor in the two-invariant-point system will 'always exceed that of the
one-invariant-point case.
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CONCLUSIONS

A new phase diagram has been developed in order to evaluate the influence
of melt productivity in complex systems undergoing phase change. The new phase
diagram features two invariant points—a eutectic and a peritectic—and was used
in a series of two-dimensional simulations of melting with variable viscosity. The
results of these simulations were compared with those obtained from another
series that used a one-invariant-point phase-change model. The solidus front was
observed to propagate away from the heated contact much more rapidly in the
two-invariant-point case. For example, at t* = 0.2 the solidus front had propagated
over 3 times farther. Additionally, the efficiency of convective heat transport and
the global kinetic energy were found to be greater by over 200% and 2 orders of
magnitude, respectively. This comparison demonstrates that the complementary
relation between melt productivity and the rheology of partially molten systems
may have a large impact on the progress of melting and vigor of convection. The
two-invariant-point phase diagram permits the extension of the continuum mixture
formulation to systems with more complex melt productivity, where such coupling
may be significant.
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