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Abstract

A common instability in metallurgy and geophysics is the dripping of negatively-buoyant, solid±liquid
mixtures. We conducted a numerical study of the ®nite amplitude evolution of multiphase Rayleigh±
Taylor instabilities. For systems with a density-weighted average viscosity of less than 0.2, two time
scales of sedimentation were observed. Initially, plumes form and merge, and solids disperse throughout
the cavity. Final clari®cation of the carrier phase by hindered Stoke's settling then occurs. The ratio of
the time to clear the mixture to the time for near-uniform dispersal of the solids can be two or three
orders of magnitude. Roof sedimentation in more viscous liquids demonstrates a complex time
dependence. The solid volume fraction distribution becomes non-topological with features of both
viscous and inertially dominated conditions at a given time step. Cyclic sedimentation occurs as the
potential energy associated with the initially unstable layer does not decay in a temporally uniform
manner. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multiphase ¯ow is a central element in the processes of heat and mass transfer in

metallurgical and geophysical applications (Beckermann and Viskanta, 1993; Marsh, 1996).

The cooling of castings and bodies of molten rock can lead to density instabilities that take the

form of multiphase drips that fall from the roof (Marsh, 1988; Morse, 1986; Simakin et al.,

1994). The density instabilities are dominated by the creation of solids during cooling, since
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changes in the melt density are typically small and often result from compositional di�erences.
The dynamic stability of the roof zone has been considered by Smith (1988) and Simakin et al.
(1994) for geophysical applications. However, neither study has considered the ®nite-amplitude
evolution of the instability, or the explicit role of multiphase interactions.
Laboratory experiments of buoyant instabilities in the ®nite amplitude regime can yield

complex styles of stirring and entrainment (Andrews and Spalding, 1990; Bradley, 1965;
Coulliette and Loper, 1995; Gri�ths, 1991; Joseph and Renardy, 1993; Kojima et al., 1984;
Linden et al., 1994; Shlien and Thompson, 1975; Snider and Andrews, 1994). For the
applications considered here, the roof instabilities are of the Rayleigh±Taylor type. Rayleigh±
Taylor instabilities are usually modeled as one of two extremes as a function of the Reynolds
number [see reviews by Sharp (1984) and Kull (1991)]. At one extreme, the model assumes
inviscid conditions, and the density ratio and the wavelength of the perturbation are important
in the description of the ¯ow (Tryggvason, 1988). At the other extreme, the model includes the
assumption of creeping ¯ow with a vanishing Reynolds number.
Numerical studies of the Rayleigh±Taylor instability can reveal features of both models

(Daly, 1967; Glimm et al., 1990; Linden et al., 1994; Tryggvason and Unverdi, 1990; Youngs,
1984; Youngs, 1989; Youngs, 1991). In a numerical study of turbulent entrainment by a two-
¯uid Rayleigh±Taylor instability, Youngs (1984) developed a relation between the position of
the entrainment front and time:

h � aAgt2 �1�
where h is the vertical position of the ®rst computational cell where the horizontally-averaged
solid fraction has reached some small value, g is the scalar acceleration of gravity and t is time.
A is the Atwood ratio, and a is a constant. The Atwood ratio is the di�erence between the
layer and reservoir densities divided by their sum. For a solid±liquid mixture in contact with a
pure liquid it is de®ned as:

A � rm ÿ rL
rm � rL

; rm � eLrL � eSrS �2�

where e and r refer to the volume fraction and mass-averaged density and the subscript L and
S refer to the solid and liquid phase. The similarity of Eq. (1) assumes complete loss of
memory of initial conditions, and hence negligible dependence on viscosity, which may be
di�cult to reach in practice. This may be important in geophysical and industrial applications
where viscosity can vary dramatically, as a result of compositional changes and changes in
local solid fraction. Eq. (1) implies a global time scale for mixing in a system of height H
(Linden et al., 1994):

t � t������
H
Ag

r : �3�

Youngs' (1984, 1989, 1991) numerical experiments demonstrate many features of turbulent
mixing for miscible ¯uids but does not include the speci®c two-phase physics to account for the
in¯uence of solids. The purpose of this study is to document solid±liquid interactions in the
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development of viscous, ®nite amplitude multiphase drips, and to consider the ®nite Reynolds
number regime prior to the onset of fully-turbulent conditions in a system where the vertical
length scale is greater than the layer thickness. Of particular interest was the spatial solid
fraction distribution that results from stirring with the carrier phase, the e�ciency of
multiphase plumes as possible agents of rapid clari®cation of a solid±liquid system, and the
utility of the vanishing Reynolds number Rayleigh±Taylor theory for multiphase geophysical
and metallurgical applications. Of additional interest is demonstrating a numerical application
of the general multiphase model of Ni and Beckermann (1991).

2. Governing equations and numerical implementation

We conducted numerical simulations of isothermal sedimentation to investigate one process
of crystal±liquid segregation. The model formulation and governing equations are an extension
of the Eulerian±Eulerian two-phase model for advection±reaction of Ni and Beckermann
(1991), which itself is a variation of the multiphase theory developed by Drew (1983), Ishii
(1975) and Hassanizadeh and Gray (1979). The volume fraction is treated as a continuous
variable. The two phases can share any computational node, but retain their identity. In
e�ect, the phase volume fraction within any node is the existence probability of the
phase, and provides a node-averaged measure of the degree of mixing or stirring. The utility
of this approach has been demonstrated in a number of other applications (Andrews,
1995; Ilegbusi et al., 1997; Ilegbusi and Spalding, 1989; Youngs, 1984; Youngs, 1989; Youngs,
1991).
The conservation of mass for a phase k can be expressed as

@

@t
�ekrk� � r � �ekrkvk� � 0 �4�

where t, and v refer to the time and volume-averaged intrinsic velocity vector.
The conservation of momentum for a phase k can be written as

@

@t
�ekrkvk��r � �ekrkvkvk� � ÿekrPk �Md

k � ekrkg

�r � fm�kfr�ekvk� � �r�ekvk��t ÿ vSrek ÿ rekvSgg
�5�

where g refers to the acceleration due to gravity, and M k
d refers to the dissipative part of the

interfacial momentum transfer. For this study, we considered a two-phase system of liquid and
solids where subscript k can be taken as L and S, respectively. We also assumed that the solid
and liquid have the same pressure which is appropriate if the speed of sound for each phase is
large compared to the calculated velocities (Drew, 1983). The interfacial balance and
momentum transfer may be modeled in terms of a drag coe�cient

Md
S � ÿMd

l � ÿ
3

4

eS
dS

rLCdejvL ÿ vSj�vL ÿ vS� �6�
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where dS is the diameter of the crystals, and C de is the generalized drag coe�cient which is
valid for all solid fractions and includes the permeability after the solid crystals reach the
contiguity limit and become stationary (Argwahl and O'Neill, 1988):

Cde � 200�1ÿ eL�
Re

� 7

5

� �
; Re � rLeLjvL ÿ vSjdS

mL
: �7�

Based on the rheology of multiphase ¯ow, the liquid dynamic viscosity is taken as mL*= mL
and the solid dynamic viscosity as

m�S �
�1ÿ eS=esp�ÿ2:5eSp ÿ eL

eS
mL �8�

where e Sp is the critical solid volume fraction, above which the crystals forms a rigid structure.
At values of the solid fraction greater than the critical solid fraction, mS* becomes in®nitely
large, forcing the velocity gradients in the solid phase to vanish. For vanishing solid fractions,
Eq. (8) reduces to that from the Einstein dilute theory, mS*=3.5 mL (Nunziato, 1983). The
value of e Sp usually falls between 0.4 and 0.6; a value of 0.5 is used here.

The boundary conditions for the carrier phase are no-slip at the roof and ¯oor and with
slip permitted at the sides. These conditions yield a semi-in®nite domain if the horizontal
extent of the computational domain is greater than the wavelength of the fastest growing
instability.
The governing equations were solved using the ®nite-volume algorithm of Spalding (1985).

Details of the numerical algorithm that combine the continuity equations of the separate
phases to generate a single pressure can be found there. This approach has been widely used to
model a variety of dynamic, two-phase systems (e.g. Samuelsberg and Hjertager, 1996). The
geometry is two-dimensional in Cartesian coordinates. The rate of penetration of the mixing
zone into the reservoir is greater for 3-d simulations at early times, and the time scale of
kinetic energy dissipation is di�erent, however 2-d models have been found to be su�cient for
resolving the overall growth-rate of the mixing zone in prior investigations (Youngs, 1991).
The numerical implementation of the source terms for sedimentation were veri®ed by
comparison with laboratory experiments such as those by Wilson (1953), Garside and Al-
Dibouni (1977) and Barnea and Mizrahi (1973). Good agreement was found between the
numerical simulations and the laboratory data for the bulk settling velocity, and the rate of
propagation and the sharpness of the clari®cation (or shock) fronts.
A ®rst-order discretization of the phase volume fraction is used here. This approach is

prone to numerical di�usion (Andrews, 1995). To assess the sensitivity of the results to
numerical di�usion, we undertook a study of grid re®nement and characteristic length scale. In
discrete particle volume averaging, the minimum grid size is limited by a multiple of the
particle size (Celmins, 1988). The ®rst case, with the lowest viscosity, was solved on a
200� 250 node grid which is nearly the limit allowed by volume averaging. This case was also
run on a 90� 130 node grid which provided su�cient resolution to reproduce the macroscopic
features of the ¯ow. This same grid was used for the second case and a 90� 200 node grid for
the third case.
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3. Finite amplitude behavior

3.1. Model description

The model system is shown in Fig. 1. A cavity contains a liquid with a strip at the roof with
a uniform mixture of solids and liquid. The roof strip is one-®fteenth the height of the cavity.
In all three example calculations, the mixed-phase roof strip had an initial solid volume
fraction of 0.2 and an initial density ratio of 1.04 between the roof strip and the underlying
¯uid. The Atwood ratio has a value of 0.02 for all three examples.
The dynamic viscosity of the carrier phase was increased an order of magnitude in each of

the three numerical examples. The density-weighted average kinematic viscosity is a system
property and is de®ned as (Meniko� et al., 1977):

�m � mL � mm
rL � rm

; mm � eLm�L � eSm�S �9�

and has a value of 0.002 for the ®rst example, 0.02 for the second example and 0.2 for the
third.

3.2. Results

Figures 1±3 are characteristic sub-portions of the computed ¯ow ®eld for three values of the
density-weighted kinematic viscosity. In all three example calculations, the instability to begin
convection resulted from numerical noise or round-o� error during the iterative solution of the
linearized form of the governing equations.
A macroscopic, time-dependent Reynolds number can be de®ned as (Gri�ths, 1986; Schlien

and Thompson, 1975):

Rem � vd
Z

�10�

where v is the vertical velocity of a downward moving thermal, d the diameter of the thermal
and Z the kinematic viscosity. The macroscopic Reynolds number in the ®rst example had
values around 200, but reached a maximum of 526. These results indicate that, for a portion of
the simulation, the largest-scale eddies are approaching turbulence. The maximum macroscopic
Reynolds number for case 3, the high viscosity case, was 22.
The instabilities formed a temporally and spatially complex pattern of interactions. The

distinctive temporal characteristic of the ¯ow is the development of larger ¯uid structures at
the expense of smaller structures as the mixture penetrates the lower ¯uid layer. The complex
interaction of negatively buoyant elements leads to merging of plumes. For example, the
distinct thermal that lies in the upper-left-center of Fig. 1(b) (centered at a vertical coordinate
of 0.6, horizontal coordinate of 0.25) merges into the stalk of the thermal to the left and loses
its identity by a scaled time of 6.84 [Fig. 1(c)].
Tryggvason (1988) and Youngs (1984) reported similar interactions among evolving, ®nite

amplitude instabilities. For both viscous and inviscid ¯uids with an initial perturbation
consisting of waves with random amplitude and phase, complex dipole-like structures formed
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Fig. 1. Case 1, Atwood ratio 0.02, density-weighted average viscosity is 0.002. Contour plot of solid volume fraction
at four di�erent scaled times after onset of instability: (a) contour interval 0.05; (b) contour interval 0.02; (c)

contour interval 0.007; (d) contour interval 0.04.
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Fig. 2. Case 2, Atwood ratio 0.02, density-weighted average viscosity is 0.02. Contour plot of solid volume fraction

at four times after onset of instability: (a) contour interval 0.05; (b) contour interval 0.02; (c) contour interval 0.007;
(d) contour interval 0.04.
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Fig. 3. Case 3, Atwood ratio 0.02, density-weighted average viscosity is 0.2. Contour plot of solid volume fraction at

two di�erent times after onset of instability: (a) contour interval 0.04; (b) contour interval 0.009.
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that propagated out of the interface mixing zone. The dominant wavelength associated with

the instability grew at the expense of smaller instabilities, yielding rather e�cient mixing at any

vertical position as the entrainment front propagated to the ¯oor. Schmeling (1987) also

reported the nonlinear feeding of higher-order terms that overtake the initial wavelength and

dominate the ®nal stages for viscous ¯uids in creeping ¯ow.

The third case, with the most viscous ¯uid, exhibited transitional behavior. Early in the

simulation [Fig. 3(a)] the spacing and amplitude of the instabilities were like those reported by

Newhouse and Pozrikidis (1990) for superimposed harmonic perturbations under conditions of

creeping ¯ow. The latter stages [Fig. 3(b)] reveal mixed-phase drops that look remarkably like

those calculated by Pozrikidis (1990) for the interaction of a prolate drop with a wall under

conditions of creeping ¯ow.

In the third case, the entire upper boundary layer did not participate in initial formation of

the instabilities. A cyclic process was observed, where only a portion of the upper layer would

become unstable, while the remainder held to the upper boundary. The retention of a portion

of the dense, mixed-phase layer was due in part to the viscous interaction of the layer with the

upper wall, but was dominated by the upward movement of the melt phase. After the initial

stage of plume formation and the subsequent diminishment of convective activity, the upper

layer issued another set of instabilities, and the process was repeated until the upper layer was

nearly exhausted of mixed-phase material. This cyclic sedimentation was not observed in the

®rst two cases. Thus, more viscous liquids will tend to produce an instantaneous non-uniform

solid fraction distribution characterized by two populations: a narrow roof layer that is

periodically unstable and a region in the lower part of the cavity where plume activity has

deposited mixed-phase material.

Fig. 4 is a sedimentation map with contours of horizontally-averaged solid fraction as a

function of scaled time for case 1. The contours form a spreading pattern in time that indicates

the formation of plumes and thorough dispersal of solids throughout the cavity. There are two

distinct time scales of roof sedimentation. The ®rst is the time scale of plume formation,

entrainment by stirring of the carrier phase and dispersal of crystals throughout the cavity. The

second is the time scale of clari®cation of the now nearly homogeneous mixture by hindered

Stokes settling. The clari®cation time scale can be obtained from the expression (Ungarish,

1993):

tSc � H

V

1ÿ
�
eSm
eSp

�
�1ÿ eSm�2

l

2664
3775 �11�

where H is the height of the cavity, V is the Stoke's velocity, E Sm the mixture solid fraction and

l the dimensionless mixture viscosity:

V � 2

9

rS ÿ rL
rL

�
a2g

mL
; l � �1ÿ eS=eSp�ÿ2:5eSp

�
�12�

a is the particle radius, and m the dynamic viscosity.
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The ratio of the time to clear the mixture to the time to disperse the initial instability is two
orders of magnitude for the ®rst case and three orders of magnitude for the second case. The
downward movement of the entrainment front for all three cases is given in Fig. 5. The
position of the entrainment front is de®ned as the vertical position of the ®rst computational
cell, where the horizontally-averaged solid fraction has reached a value of 0.004. Eq. (1) is
shown in Fig. 5, where a was taken to be 0.045, consistent with the experiments of Linden et
al. (1994). Eq. (1) gives reasonable agreement for early times; however, once the dense, mixed-
phase upper zone has been thoroughly penetrated and disrupted by less dense ¯uid, Eq. (1)
diverges from the results obtained in our calculations. It appears that the time-squared
dependence of the position of the entrainment front ceases when the supply of negative
buoyancy from the upper layer is exhausted, and the instabilities continue to evolve by mutual
interaction and entrainment by stirring of solid-free ¯uid. The in¯uence of a lower wall is
apparent in Fig. 5, where vertical propagation of the entrainment front is slowed while
approaching the lower boundary

Fig. 4. Sedimentation map for case 1, with contours of horizontally-averaged solid volume fraction as a function of
scaled time after onset of instability.
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4. Discussion

The dimensionless growth rate of the instability as a function of the wave number of a
in®nitesimal perturbation with zero surface tension can be determined from the relationship
given by Newhouse and Pozrikidis (1990):

~s � smL
Drgb

� 1

2b

1
2
sinh 2bÿ b� 1

l �sinh
2 bÿ b2��

1ÿ 12

l

�
b2 �

�
coshb� 1

l sinhb
�2

26664
37775 �11�

where s is the dimensional growth rate, b is the thickness of the unstable layer, and b the
dimensionless wave-number, b=2pb/x, where x is the wavelength of the perturbation.

For the initial condition of a layer with a 0.2 solid fraction, the fastest-growing wavelength
was not observed as a dominant scale of the instabilities in the ®rst two examples until well
into the ®nite amplitude regime, between a scale time of 3±7 (Figs. 2 and 3), and this
wavelength did not persist.

The third example, with the highest viscosity, gives better agreement with the predictions of
linear theory. However, the spacing of the instabilities that appear in Fig. 3(a) do not have
equal amplitudes as a result of the non-harmonic initial perturbation which is likely to be the
case in application. The dominant length scale in the ®nite-amplitude regime is thus di�cult to
generalize. Some of the initial instabilities retained the initial growth scale and continued to the
¯oor with little mutual interaction. Others merged and coalesced, forming complex shapes with
time-dependent characteristic length-scales, much like the ®rst two cases. The process of
accumulation of buoyant elements can be seen in Fig. 3(b).

Fig. 5. Position of the entrainment front as a function of time for the three cases considered here. The entrainment

front is de®ned as the vertical position where the solid volume fraction is greater than or equal to 0.004.
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The horizontally-averaged solid fraction distribution in the lower portion of the cavity for
both the lowest-and highest-viscosity cases is shown in Fig. 6. The solid-fraction distributions
represent di�erent model times, but similar points in the respective cycles of dynamic activity.
For the low-viscosity case, the curve indicates a nearly uniform, horizontally-averaged, vertical
distribution of solids. The more viscous case has approximately 40±50% more solids than the
low-viscosity case, as a result of the diminished stirring of the higher viscosity instabilities.
Although the higher-viscosity instabilities take more time to traverse the cavity, they arrive at
the ¯oor with a higher proportion of solids. The signi®cance is that solid populations on the
¯oor of the cavity with low-viscosity ¯uid will represent the sedimentation of solids that have
been well stirred with their environment. For the higher-viscosity ¯uids, the instabilities that
brought the solids to the ¯oor will have undergone much less entrainment by stirring, and so
could retain some memory of conditions at the roof.

5. Conclusions

Numerical experiments of crystal sedimentation in a viscous carrier phase were performed.
The results demonstrate at least two time scales in the sedimentation of mixed-phase roof
layers: the ®rst is the dispersal time scale, which can be very rapid in low viscosity materials;
the second is the time scale for hindered settling of mixture. Previous models of these roof
instabilities proposed that the Rayleigh±Taylor conditions might provide a means of rapid
transport of the crystals from the roof to the ¯oor without dispersal. For low-viscosity
materials, just the opposite occurs: the ¯uid instabilities provide for substantial mixing.
For the higher-viscosity material simulated in case 3, a cyclic behavior was observed,

characterized by the repeated generation of instabilities from a sub-layer of the unstable roof
strip. Although the cavity transit time is longer than the times for the lower viscosity cases, the
dispersal and consequently dilution by the entrainment of the carrier phase, was less. The solid

Fig. 6. Horizontally-averaged vertical solid volume fraction distribution for case 1 and case 3 in the lower portion
of the system. Case 1 data has a scaled time of 10.25 after onset of instability; case 3 with a scaled time of 27.4 after

onset of instability.
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fraction distribution typically would have two populations: a spatially restricted, but high solid
fraction, region at the roof, and a broader, and a somewhat lower solid fraction distribution at
the ¯oor. These results suggest that viscous materials may be more e�cient at ®nal clari®cation
of solids that form at the roof, because the di�erence in transit times between viscous and
lower-viscosity materials is not nearly as great as the ®nal clari®cation of the lower-viscosity,
dispersed mixtures.
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