
ON THE EFFECTS OF STOKES, RICHARDSON, AND STABILITY NUMBERS IN 
PERSISTENT AND ACCELERATING VORTICES 

 
ALAIN BURGISSER,1 GEORGE W. BERGANTZ,2  and ROBERT E. BREIDENTHAL3 
 
1University of Alaska Fairbanks - Geophysical Institute, Alaska Volcano Observatory, 
Fairbanks, AK 99775-7320 USA, alain@gi.alaska.edu 
2University of Washington, Dept. of Geological Sciences, Box 351310 Seattle, WA 98195-
1310 USA, bergantz@u.washington.edu 
3University of Washington, Department of Aeronautics and Astronautics, Box 352400 Seattle, 
WA 98195-2400 USA, breident@aa.washington.edu 
 
 
1.  Introduction 
 
1.1 PERSISTENT VORTICES 
Based on observations in stratified flow, Cotel [1,2] proposed a new model for stratified 
entrainment, in which a new parameter was asserted to be necessary to explain the 
observations.  When a vortex is near an interface, the fluxes across the interface are 
determined by conventional parameters such as Richardson and Reynolds numbers as well as 
a new "persistence parameter."  A measure of the stationarity of the vortex, the persistence 
parameter is essentially the ratio of the rotational to the translational speed of the vortex with 
respect to the interface.  It plays as large a roll in stratified entrainment as any other 
parameter. 
According to the theory, the fluxes across the interface would be reduced to their laminar 
values, independent of the fine-scale structure of the turbulence, if the interface is sufficiently 
stratified to remain essentially flat, 4

1
Re>Ri .  If a vortex can not engulf across the interface, 

all fluxes there must be purely diffusive.  This is also true if the interface is a solid wall.  In 
recent water tunnel experiments [3], vortex generators added strong, streamwise vortices to 
the flow at the upstream end of a corrugated plate.  When each streamwise groove contained a 
single vortex in the optimum location, the vortices were stabilized.  The wall heat flux 
measured in the bottom of a groove was reduced to a laminar value when the vortices were 
stable.   
It is counter-intuitive that adding strong vortices to the flow would reduce the wall flux.  It is 
also surprising that a turbulent flow would exhibit a laminar wall flux.  There are two 
different kinds of turbulence in wall flows, the ordinary nonpersistent flow with relatively 
high, "turbulent" wall fluxes and the persistent case with low, "laminar" wall fluxes.  With 
such unusual flux behavior, a natural question is the effect of persistence on two-phase flow. 
 
1.2 ACCELERATING VORTICES 
Self-similarity is one of the few powerful tools in turbulence research.  Early on, Richardson 
and Obukhoff used the concept to deduce the behavior of the energy cascade in the inertial 
range of eddies in turbulence [4,5].  Because there is no distinguishable eddy size in this 
range, each eddy must behave like any other, except for a stretching in length and time scales.  
While self-similarity in space has received considerable attention, self-similarity in time has 
been relatively neglected.   
Consider ordinary unforced turbulence at high Reynolds number.  Viscosity sets the size of 
the smallest eddy, given by the Kolmogorov microscale λ0 [6,7].  The ratio of the 
smallest to the largest eddy is  
 λ0/δ = Reδ

-3/4, (1) 



where δ is the largest eddy size and  
 Reδ = ΔUδ/ν (2) 
is the Reynolds number of the largest eddies, whose characteristic velocity is ΔU.  At large 
Reδ, the microscale is much smaller than the large scale vortices.  According to Richardson 
and Obukhoff, energy cascades from the largest eddies down towards the smallest in an 
essentially inviscid process without dissipation, until the Kolmogorov microscale is reached. 
The eddy Reynolds number at this point is  
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where 
0λ

v  is the characteristic velocity of scale 0λ .  The kinetic energy is rapidly converted 
to thermal energy by viscous stresses.   
At large Reδ, there is a wide range of eddies larger than 0λ  but smaller than δ.  Kinetic energy 
is transferred from one eddy to the next by inertial forces without appreciable energy loss in 
the inertial subrange.  The kinetic energy flux, e, is constant so that  
 e = vλ

3/λ = ΔU3/δ. (4) 
Within the inertial subrange, an eddy of size λ and speed vλ presumably hands over a large 
fraction of its energy in one turnover time given by 
 τλ = λ/vλ =  λ2/3/e1/3 =  (λ/δ) 2/3 τδ, (5) 
where τδ = δ/ΔU is the large scale vortex rotation period. A different question is how long it 
takes to reach scale λ from the start of the cascade.  It has been suggested that self-similarity 
requires  

 dt = const.λ2/3dλ/(e1/3λ), (6) 
where dt is the differential time interval during which energy is transferred from scale λ to 
λ − dλ [5].  Integration of (6) and the use of (4) provides the elapsed time t(λ) to reach scale 
λ starting from scale δ or 
 t(λ) = [1 - (λ/δ)2/3] τδ. (7) 
By combining equations (5) and (7), τλ/τδ 
= 1 - t(λ)/τδ. (8) 
The rotation period at scale λ is a linearly decreasing function of the elapsed time since the 
start of the cascade.  This seems reasonable since there is no other time scale available.  The 
radius of curvature of the function is therefore infinite, and therefore the relationship must be 
linear.  The initial and final conditions of the energy cascade require the function to decline 
linearly in t.  
 

2. Super-exponential forced turbulence 

A new class of forced turbulence has recently been proposed [9].  The forcing is of form 
exp(t/τv) where the e-folding time imposed on the vortices τv = τv(t) is itself a function of 
time.  Self-similar flow implies that there is no distinguished scale, either spatial or temporal.  
Hence the vortex rotation period τv(t) at any time t is always a constant fraction of the next 
rotation period, τv(t + τv(t)).  Every rotation looks like every other one, except for a constant 
proportional change in scale.  Expressed another way, the decrease in rotation period per 
rotation is a constant, independent of time, namely 

 [τv(t) - τv(t + τv(t))]/τv(t) = β,                                   (9) 

where β is a constant.  Suppose τv(t) is a general polynomial of order n given by  



 τv(t) = τv(0) + a1t + a2t2 +… antn.                            
 (10) 

After substituting equation (10) into equation (9) and some algebra, it is found that 

[-a1(τ0+a1t+a2t2+…antn) + O(
2nt )]/(τ0+a1t+a2t2+…antn) = β.           (11) 

The left hand side has terms of order t raised to the (n2-n) power while the right-hand-side is 
independent of t.  This can only be satisfied if n2-n=0.  The solutions are n = 0 or n = 1.  
Thusai = 0 for all i >1, and a1 = - β. For this to be true, the only possible self-similar form is
 τv(t) = τv(0) - βt,                                                      
 (12) 
where τv(0) is the rotation period at t = 0.  In dimensionless form,
 τv(t)/τv(0)  = 1 - βt/τv(0).                                         
 (13) If all self-similar vortices follow equation (13), the 
self-similar vortices in the inertial subrange must also.  From a comparison between equations 
(7) and (13), evidently β = 1 following the energy cascade in unforced turbulence.  This 
suggests that dissipation always vanishes at β = 1. 
Figure 1 illustrates in graphical form the self-similar evolution for the general case of β > 0.  
At the end of the first rotation (n=1), the rotation period is reduced by a constant factor (1 - 
β).  At the end of the second rotation (n=2), τv is again reduced by the same factor, and so on.  
At finite time t/τv(0) = 1/β, τv vanishes. 
To an observer following the cascading energy in the inertial subrange, β = 1.  However, to 
an observer following the large scale vortices in the same unforced flow, β = -1 [6,7].  The 
rotation period is approximately equal to the vortex chronological age, since there is no other 
time scale available.  The value of β thus depends on the observer.  There seem to be two 
different canonical coordinate frames, in analogy with Eulerian and Lagrangian viewpoints of 
fluid motion, that yield different values of β for the same flow.  An observer may either 
remain at a fixed eddy scale or follow the energy.  In ordinary, unforced turbulence, the 
largest eddies extract energy from the mean flow via instabilities and hand it off to the top of 
the cascade in the inertial subrange.  Energy flows through the largest eddies.  An observer 
remaining at the largest vortices could not follow the energy in unforced turbulence. 
The reference frame of the observer can be defined in terms of the dimensionless flux of 
energy past him.  Define γ to be the rate of energy flux e' past the observer normalized by the 
energy cascade flux e through the largest eddies so that 
 γ  = e'/e  =  e'δ/ΔU3.                                                (14) 
For an observer fixed at scale λ = δ, γ = 1 and β = -1 for unforced turbulence.  For an 
observer moving down the cascade with the energy flux, γ = 0 and β = 1.  For intermediate 
cases, a reasonable conjecture is a linear relation, where β = 1 - 2γ or            γ = (1-β)/2. 
In the limit of β = 1, the implication is that the entrainment rate vanishes [9].  This implies 
that the cascade process is interrupted, shutting off the flow of energy from the largest eddies 
into the cascade.  Such a situation is plausible in light of the fact that the hand-off process of 
energy requires something like a full rotation of the vortex.  For        β = 1, however, the 
time for a vortex to rotate or for a vortex sheet to roll up is just equal to the interval remaining 
before the singular time. 
 
 
3. Vorticity  
 



The self-similar evolution represented by equation (13) is also the solution to the scalar 
equation  
 Dω/Dt = βω2,                                                          
(14)  
if ω = 1/τv. The vector vorticity equation for constant density flow in the absence of body 
forces is  
 Dω /Dt = (∇u) ω  + ν∇2ω .                                       
(15) 
This suggests that, for inviscid self-similar flow, the magnitude of the nonlinear vortex 
stretching term (∇u) ω  corresponds to βω2.  Thus, there is a kind of symmetry between the 
rate of deformation tensor and the vorticity, such that their inner product is always 
proportional to the square of the magnitude of the vorticity.  The rate of deformation becomes 
proportional to the vorticity magnitude, and the proportionality coefficient is simply β.  
 
 
4. Related experiments 
 
4.1 EXPONENTIAL JET 
A flow with a constant imposed time scale is the exponential jet [11,12], which exhibits a 
constant vortex rotation period for the largest vortices.  Figure 2 illustrates the evolution of 
the large-scale rotation period as a function of time.  All known turbulent self-similar are 
represented as a straight line on this figure, differing only in their slope,  -β.  The exponential 
jet entrains and mixes at a somewhat lower rate than the unforced jet.   
 
4.2 TRANSVERSE EXPONENTIAL JET 
In an exponential transverse jet, vortices are formed in the near field with an initial rotation 
period controlled by the nozzle time, the ratio of local nozzle diameter to speed [13].  
However, as the vortices advect downstream, they are subjected to subsequent nozzles that 
increase in size and speed in an exponential way.  The corresponding e-folding time 
introduces a second time scale on top of the first one.  The ratio of these two times is an 
acceleration parameter α, a measure of the forcing.  As α increases above the value of one, 
vortex rollup and entrainment are reduced.  There is less time available for the vortices to 
complete a rotation. 
 
4.3 GENERALIZED RAYLEIGH-TAYLOR FLOW 
In order to test the conjecture that entrainment should vanish in the limit of 1→β  in super-
exponential forcing, a generalized Rayleigh-Taylor flow was simulated in two-dimensional 
inviscid calculations using the CLAWPACK code [14,15].  The density ratio across the 
interface was two, and the reduced acceleration g' was given a super-exponential profile in 
time with an initial dimensionless value of 0.1. The initial dimensionless e-folding time was 
one.  When β was negative or zero, the interface rapidly formed into a mushroom shape as 
baroclinic vortex sheets roll up into discrete vortices.  However, when β is one, the vortex 
sheet does not roll up at all.  This is anticipated for all initial disturbances larger than about 
g0'τ02.  A plot of the vortex size δv, normalized by the total layer thickness δ, as a function 
of β is shown in figure 3.  Here, the ratio δv/δ was evaluated at fixed δ.  As 1→β , the ratio 
δv/δ decreases to zero. Vortex sheet rollup is then completely inhibited.   
The chaotic mixing regions associated with entrainment in accelerating turbulence have 
recently been explored by Govindarajan [16].  The connection between the chaotic mixing 
regions and β has not yet been determined, but the prime suspect is the motion of the saddle 
point on the separatrix.  



When β = 1, the vortex sheet does not roll up, even though the remaining time is equal to the 
instantaneous rotation period.  Furthermore, there is some inhibiting effect on vortex growth 
even when β < 1.  J. Jimenez (personal communication) has pointed out that this implies the 
flow must be stabilized by the acceleration, in contrast to merely not having sufficient 
available time for rollup.  Future work will analyze the stability. 
 
 
5. Two-phase flow 
 
5.1 PERSISTENT VORTICES 
Define the persistence parameter T to be the number of rotations a vortex makes before it 
moves a distance with respect to the nearby interface equal to its diameter.  In the persistent 

limit of T >>1, we expect particle separation for Stokes numbers 11
≤≤ St

T
, since the vortex 

makes many rotations while stationary, like a centrifuge.  This contrasts with ordinary, 
nonpersistent turbulence, where particle separation only occurs for 1≅St  [17]. 
 
5.2 ACCELERATING VORTICES 

For a self-similar, accelerating vortex, tv βτ −=1 , so the Stokes number 
v

pSt
τ

τ
≡  increases 

without limit as 
β
τ vt→ , where pτ is the particle relaxation time.  If the Stokes number is 

initially greater than one, it remains so for all time.  The particles are always uncoupled from 
the fluid.  However, if the Stokes number is initially less than one, it increases to unity at 

time ⎟⎟
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τ pt .  The particles are then slung out of the vortex as it spins up. 

As an example of the stability parameter, consider a forced Rayleigh-Taylor flow, in which 

the acceleration goes as 2
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particles.  The stability parameter is then ⎟⎟
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scale of the vortex.  The stability parameter decreases with time.  So if 
0

0 ττ
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g < , then 

1<StRi  for all time, and the particles immediately fall out.  On the other hand, if 
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then the particles do not fall out initially.  Only at time ⎟
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parameter becomes unity and the particles fall out.   
However, depending on the value of β , the particles may first be slung out radially.  If 

2
0 pg τ
δ

β > , the particles will reach unity Stokes number before unity stability parameter, and 

they will be centrifuged out instead.  The particle motion may thus influence the flow 
stability. 
 



 
 
 
6. Conclusions 
 
Two new classes of turbulent flows have been recently recognized.  In the first, 
the large-scale vortices are stationary near an interface.  If the interface is 
strongly stratified or a solid wall, the fluxes are laminar.  A vortex in the 
persistent limit will centrifuge out particles over a wide range of the Stokes 
number, since the vortex is stable and completes many rotations in place.   
In the second, self-similar acceleration requires a vortex rotation period to 
decrease linearly with time.  The entrainment and dissipation rates depend 
solely on the logarithmic rate of decrease in rotation period.  If the latter is large, 
vortex rollup is strongly inhibited.  For vortices in an accelerating Rayleigh-
Taylor flow, particles will eventually fall out unless the rotation period decreases 
at a sufficient rate, in which case the particles will be slung out radially.   
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Fig. 1 Temporal evolution of the vortex rotation period τv for 0<β<1 in self-

similar flow. 
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Fig. 2    Vortex rotation period τv(t) for all self-similar flows 
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Fig. 7  Vortex size as a function of β.  
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                   Fig. 3  Vortex size as a function of β.           



 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

Fig. 4 At every instant, the current rotation period is just equal to the 
remaining available time for β = 1.  The vortex sheet never rolls up. 
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