
www.elsevier.com/locate/jvolgeores
Journal of Volcanology and Geotherm
Transient two-dimensional dynamics in the upper

conduit of a rhyolitic eruption: A comparison of

closure models for the granular stress

J. DufekT, G.W. Bergantz

Department of Earth and Space Sciences, Box 351310, The University of Washington, Seattle, WA 98195, USA

Received 20 December 2003; accepted 1 September 2004
Abstract

To elucidate the role of particle collisions in redistributing momentum after fragmentation, a numerical study was performed

comparing the behavior of an inviscid, or collision-less, granular material with a granular material whose viscosity and pressure

were modeled using kinetic theory. The granular viscosity calculation is sensitive to particle size and three particle sizes were

considered: 0.0002 m, 0.002 m, and 0.02 m. A critical volume fraction of gas (0.75) identifies the onset of fragmentation,

dividing the region of rhyolitic magma with dispersed bubbles from the region of turbulent gas with dispersed particles.

The transient simulations can be divided into two dynamic regimes: an initial shock followed by a transition to steady state.

During the initial shock phase, treatment of the granular pressure and viscosity led to greater particle velocities relative to the

inviscid calculation due to the development of higher gas pressure at fragmentation. However, as steady state is approached the

viscosity slows the particle phase relative to the inviscid counterpart for particles greater than a millimeter. The modeled sub-

millimeter particle velocity was insensitive to the treatment of the granular pressure and viscosity. Centimeter-scale particles

have a much higher granular viscosity (up to 10�1 Pad s) and the kinetic theory calculation is thus relevant in these conditions.

After reaching steady state, the differential velocity between gas and particles at the conduit exit correlates with particle size for

both the inviscid and granular viscosity calculations: negligible differential velocity develops for sub-millimeter particles, but

centimeter-scale particles exit the conduit with N5% differential velocity between phases.
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1. Introduction

The combination of high viscosity and high

volatile contents in rhyolitic magmas contributes to

the generation of some of the most explosive, Plinian-

style eruptions (Carey and Sigurdsson, 1989). The
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eruption sequence of depressurization, vesiculation,

and fragmentation is often generalized to the setting of

a high aspect-ratio conduit. This geometry is based

upon the observation of relatively stationary central

vents often associated with this class of eruption

(Dobran, 1992, 1993; Slezin, 2003).

Two distinct regions of multiphase flow exist in a

developing conduit eruption and are separated by a

fragmentation front: magma/bubble flow and gas/

particle flow (Fig. 1). Regions of the conduit that have

become supersaturated in a volatile species in

response to rapid depressurization will begin to form

and grow bubbles. The high viscosity of the rhyolitic

magma inhibits the formation of significant differ-

ential velocities between these phases, provided a

permeable network of interconnected bubbles has not

formed (Melnik et al., 2005). However, the net

buoyancy force of the bubbles accelerates the

magma/bubble flow. Thus the continuous depressuri-

zation during the rise of the magma provides a

positive feedback as the bubbles continue to grow,
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Fig. 1. Schematic representation of multiphase regions of the

conduit: Below the fragmentation level the continuous phase is a

rhyolitic magma with dispersed bubbles. At the critical gas fraction

of .75 fragmentation occurs, creating a turbulent gas phase with

dispersed particles.
and the magma/bubble mixtures accelerates until

reaching fragmentation.

The precise mechanism of fragmentation remains

poorly understood with little unambiguous data to

differentiate between ductile and brittle mechanisms

(Dingwell, 1996; Mader, 1998). Sparks (1978) ini-

tially suggested that fragmentation is associated with

.75 gas volume fraction, due to many observations of

vesicularity in this range and due to the close

correspondence of this value with the maximum

packing limit of spheres of a single diameter.

Observations of much lower vesicularity (Thomas et

al., 1994; Bachmann et al., 2000) in some silicic

pumices motivates further scrutiny of the fragmenta-

tion limit. It has been proposed that there is a

correlation between vesicularity and viscosity of the

host magma, with more viscous magma fragmenting

at lower gas volume fraction (Gardner et al., 1996;

Papale, 1999). However, we treat fragmentation by a

static model assuming that it occurs at a gas volume

fraction of .75. This facilitates comparison of the

granular stress differences by reducing the degrees of

freedom in the study; a dynamic fragmentation model

will be the subject of future studies.

Following fragmentation the multiphase mixture

consists of a turbulent gas with dispersed particles or

melt droplets. Two principle interactions are respon-

sible for the redistribution of momentum in this

regime: particle–particle interaction and particle–gas

interaction. Particles transmit momentum to each

other directly through either elastic or inelastic

collisions. Particle–fluid interaction occurs chiefly as

a result of the drag force between a particle and the

fluid when the two are moving relative to each other.

The aerodynamic response time of a particle is the

characteristic timescale by which a particle responds

to these changes in the flow field. This timescale can

be developed by considering the equation of motion

for the particle in a fluid. For situations in which the

density of the particle is much greater than the density

of the fluid, such as in the gas/particle flow following

fragmentation, and neglecting particle collisions,

gravity and wall interaction, the equation of motion

for a particle with small particle Reynolds number

reduces to (Maxey and Riley, 1983):

dcsi
dt

¼
� 6pdplg

mp

csi � c
g
i

� �
; ð1Þ



J. Dufek, G.W. Bergantz / Journal of Volcanology and Geothermal Research 143 (2005) 113–132 115
where ci
s is the instantaneous velocity of the particle,

ci
g is the instantaneous velocity of the gas, lg is the

gas viscosity, mp is the mass of the particle, and dp
is the particle diameter. (The decomposition of the

instantaneous velocity into an average and fluxuating

component will be used throughout the paper,

ci=hcii+Ci=ui+Ci. A list of all symbols used is

included in the Appendix A.) For a given differential

velocity between the particle and the gas, the time-

scale by which the particle accelerates to match the

velocity of the gas is given by the reciprocal of the

leading coefficients on the right-hand side of Eq. (1).

Rearrangement so that this timescale is expressed in

terms of the particle density yields:

tp ¼
qpd

2
p

6plg

: ð2Þ

If the density of the particle and the viscosity of the

gas remains constant, then the aerodynamic response

timescale increases as the square of the particle

diameter. The ratio of the aerodynamic timescale to

the characteristic timescale of the gas motion is

typically referred to as the Stokes number (Eaton and

Fessler, 1994). Larger Stokes number particles are

slow to respond to gas motion whereas small Stokes

number particles behave as tracers to the fluid

motion.

The calculation of numerous individual particle

paths along with a turbulent flow field is computa-

tionally intractable. Hence, work in both the volcano-

logical and industrial community has aimed to try to

develop better constitutive models to predict the

macroscopic manifestations of the particle–particle

and particle–fluid interactions (Lun et al., 1984;

Dobran, 1992; Gidaspow, 1994).

In the context of conduit flow, two multiphase

theories have been applied: homogenous (single-

fluid simulations) and non-homogenous (multi-fluid

simulations). Homogeneous conduit flow models

(Wilson and Head, 1981) average the phase proper-

ties to create one effective fluid with bulk proper-

ties such as density. The particle–particle and

particle–fluid interactions are approximated through

the designation of a viscosity to relate stress to

strain rates in the bulk material. The implicit

assumption in these models is that the aerodynamic

timescale of the dispersed phase is close to zero.
This assumption applies well for bubble/rhyolitic

magma flow with low permeability, because there is

little relative velocity between phases (Mader,

1998). Above the level of fragmentation a homo-

genous model should perform well provided that

the particles remain tracers of all scales of fluid

motion (Dobran, 2001), i.e. the particle size is

small enough that the Stokes number approaches

zero for any given eddy size.

However, Dobran (1992) demonstrated that sig-

nificant mechanical non-equilibrium effects (differ-

ential velocities between phases) are important in

viscous conduit flow, and developed a one-dimen-

sional, steady state, two-phase flow model. This

model has been subsequently modified for different

magma viscosity relationships accounting for vari-

able magma composition and crystal content

(Papale and Dobran, 1994; Papale et al., 1998),

different volatile effects (water and carbon dioxide;

Papale and Polacci, 1999), different fragmentation

criteria (Papale, 1999), and fragmentation efficiency

(Papale, 2001). These models have produced results

consistent with quasi steady state behavior of Mt.

St. Helens and Vesuvius (Papale and Dobran,

1994).

Previous non-homogeneous multi-fluid numerical

simulations (Dobran, 1992; Papale and Dobran, 1994)

have treated the particle phase as inviscid. That is, in

one-dimensional simulations where viscosity appears

in the drag relations, the particle-wall drag is set to

zero. However, the viscosity of the gas is adjusted

using mixture theory to account for the distortion of

the flow field created by the particles and the apparent

increase in viscosity that this creates (Dobran, 1992).

Papale (2001) modified this model by introducing a

parameterized normal collisional stress (analogous to

the granular pressure described here) that provided a

repulsive force for high particle concentrations and

viscosity for the system was developed using mixture

theory.

The inviscid granular phase assumption is appro-

priate in regions of the flow where there is no

collisional redistribution of momentum, or in a fully

fluidized bed far from boundaries (Gidaspow, 1994;

Appendix B). However, the magnitude of collisional

redistribution of momentum following fragmentation

remains an open question. All the phases in a

multiphase system are coupled to each other through
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drag force relationships, and consequently changes in

the constitutive relations of one phase affects the other

phases. This, in turn, may result in counter-intuitive

feedback in the conduit system. In order to examine

the effect of particle collisions in the conduit, a suite

of numerical simulations were performed in which the

constitutive equation for the granular phase was

varied to reflect the collisional and collision-less

counterparts. Our approach differs from that of Papale

(2001) in that the terms of the granular stress tensor

are developed using kinetic theory with the granular

viscosity and pressure linked to the local velocity field

of the particles through the granular temperature.
2. Multi-fluid model for multiphase flow

2.1. Multi-fluid theory

Our parameterization study of the granular con-

stitutive relationship was performed in the context of a

transient, 2-D, isothermal, multi-fluid simulation of

conduit dynamics. The multi-fluid treatment of multi-

phase phenomena has been implemented in a range of

volcanological and industrial problems (Gidaspow,

1986; Dobran et al., 1993; Neri and Macedonio, 1996;

Neri et al., 2002). The multi-fluid methodology treats

each phase as a separate continuum with differential

velocities between phases. The particle phase(s) are

averaged to form continuum conservation equations.

The dtrueT fluid and particle fluids are interpenetrating

continua; that is, the volume fraction of each phase is

calculated at individual grid points. The sum of the

volume fractions at any one point is required to be

unity:

eg þ es ¼ 1: ð3Þ

Additionally, the conservation equations for the

different fluids are:

Below the level of fragmentation

Continuity:

B

Bt
egqg

� �
þ B

Bxi
egqgu

g
i

� �
¼ Rg; gas ð4Þ

B

Bt
emqmð Þ þ B

Bxi
emqmu

m
i

� �
¼ Rm; magma ð5Þ
Conservation of momentum:

B

Bt
egqgu

g
i

� �
þ B

Bxj
egqgu

g
i u

g
j

� �

¼ B

Bxj
S
g
ij

� �
þ egqgg� I

gm
j ; gas ð6Þ

B

Bt
emqmu

m
i

� �
þ B

Bxj
emqmu

m
i u

m
j

� �

¼ B

Bxj
Smij

� �
þ emqmgþ I

gm
j ; magma ð7Þ

Above the level of fragmentation

Continuity:

B

Bt
egqg

� �
þ B

Bxi
egqgu

g
i

� �
¼ 0; gas ð8Þ

B

Bt
epqp

� �
þ B

Bxi
epqpu

p
i

� �
¼ 0; particles ð9Þ

Conservation of momentum:

B

Bt
egqgu

g
i

� �
þ B

Bxj
egqgu

g
i u

g
j

� �

¼ B

Bxj
S
g
ij

� �
þ egqgg � I

gp
j ; gas ð10Þ

B

Bt
epqpu

p
i

� �
þ B

Bxj
epqpu

p
i u

p
j

� �

¼ B

Bxj
S
p
ij

� �
þ epqpg þ I

gp
j ; particles ð11Þ

Here e is the volume fraction of either particles,

magma, or gas, Sij are the stress tensors, Ij are the

inter-phase momentum transfer terms, and R are the

exsolution rates for the magmatic case (Jackson,

1983; Syamlal, 1987). The subscript ( g) refers to

the gas phase, (m) refers to the magma below

fragmentation, and ( p) to the particles above

fragmentation.



J. Dufek, G.W. Bergantz / Journal of Volcanology and Geothermal Research 143 (2005) 113–132 117
2.2. Constitutive relations below the level of

fragmentation

The magmatic stress tensor, Smij , is given by:

Smij ¼ � PmDij þ Tm
ij ; ð12Þ

where Pm is the pressure and T
m
ij is the deviatoric

component of the magmatic stress tensor. The gas and

magmatic pressure are assumed to be equivalent for

these calculations (Papale and Dobran, 1994). The

deviatoric component is closed using the experimental

compilation of Hess and Dingwell (1996) for the

viscosity of hydrous leucogranitic melt:

smij ¼ 2lmemD
m
ij ; ð13Þ

where:

log lmð Þ ¼ � 3:545þ 0:833ln wð Þ½ 	
þ 9601� 2368ln wð Þ½ 	
= T � 195:7þ 32:25ln wð Þ½ 	f g; ð14Þ

where w is the weight percent of water, and T is the

temperature in Kelvin. The density of the magma is

held constant at 2300 kg/m3. The viscosity of the gas

phase is held constant at 5.0�10�5 Pad s, and its

density derived from the ideal gas relation both below

and above the fragmentation front. As a first

approximation, no turbulent viscosity model was used

in these simulations. The simulations of Agrawal et al.

(2001) suggest that provided qpesJqgeg riser dynam-

ics are relatively insensitive to the use of a turbulence

model. This condition is satisfied in most of the

computational domain for this problem, although

further investigation of turbulence models in this

parameter space is needed.

Below the level of fragmentation, it is assumed that

the high viscosity of the magma will inhibit large

velocity differences between the bubbles and the

magma. Hence a simple Stokes drag relation is used:

I
gm
i ¼ 6plm

qmd
2
bub

u
g
i � umi

� �
� eg

B

Bxi
Pg þ Rgu

m
i : ð15Þ

The first term is the Stokes drag term and the second

is the buoyancy term. The last term accounts for the

mass transfer from the magma to the bubbles. In Eq.

(15) the bubbles are assumed spherical and non-

deforming.
2.2.1. Volatile exsolution model

The equilibrium solubility of water has been

modeled as:

Ceq ¼ P:5
g 0:4874� 608:0

T
þ 489530

T2

� �

þ Pg � 0:06062þ 135:6

T
� 69200

T2

� �

þ P1:5
g 0:00253� 4:154

T
þ 1509:0

T2

� �
ð16Þ

[The equation is reparameterized and simplified from

the solubility model of Zhang (1999) by Y. Zhang.] Pg

is the gas pressure in MPa, T is the temperature in

Kelvin, and Ceq is the equilibrium solubility in weight

percent (Zhang, 1999). Immediately following depres-

surization the dissolved water content will be greater

than the equilibrium dissolved water content for the

lower pressure state. This super-saturation will drive

bubble formation and growth. Water is the only

volatile phase used here. While this is oversimplified

compared with the natural case, it was considered

adequate from the standpoint of comparing the

dynamics of the granular viscosity phase versus an

inviscid granular phase.

Bubble nucleation and growth is considered almost

instantaneous upon super-saturation. This is also a

simplification, as bubble growth has been demonstra-

ted to be primarily diffusion controlled and some time

is required to diffuse water from the melt into the

bubbles (Lyakhovsky et al., 1996). Subtracting the

equilibrium solubility from the initial dissolved water

content gives the weight percent of water exsolved.

This can then be converted to the volume fraction of

exsolved water through the equation of state. In

practice, this was accomplished by setting the reaction

rates in Eqs. (4) and (5) such that the exsolution of

supersaturated water was accomplished over the

duration of one time-step, which for these simulations

was on the order of 1.0�10�4 s:

Rg ¼ DVgqg=Dt; ð17Þ

and

Rs ¼ � DVgqg=Dt; ð18Þ

where DVg is the volume fraction of gas exsolved in

one time step.
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The volume fraction of exsolved gas can also be

converted into an effective bubble diameter using the

prescribed bubble number density, 1015 m�3 based

upon the experiments of Hurwitz and Navon (1994).

The bubble diameter dbub is needed to compute the

interphase drag between the bubbles and the magma

(Eq. (15)).

2.3. Constitutive relations for the granular material:

kinetic theory

The binary collision of particles represents a

possible means of redistributing momentum in a

particle dense region following fragmentation. On

macroscopic scales this momentum diffusivity can be

modeled using a granular viscosity to close the

deviatoric component of the granular stress–strain rate

relationship, and a granular pressure for the isotropic

component (Lun et al., 1984; Syamlal, 1987). To

develop the properties of the collisional regime, kinetic

theory, very similar to that used in the estimation of gas

viscosities from molecular collisions, is employed

(Gidaspow, 1994). Lun et al. (1984) and Syamlal

(1987) developed the method implemented in these

calculations, and the reader is referred to these sources

for a more detailed accounting of the procedure. The

following set of equations results from their analysis

considering binary, inelastic collisions of particles:

S
p
ij ¼ � PpDij þ T

p
ij; ð19Þ

where Sij
p is the granular stress tensor, Pp is the granular

pressure, and Tij
p is the viscous stress tensor. The

granular pressure is given by:

Pp ¼ 2 1þ eð Þqpg0e
2
php; ð20Þ

and the granular viscous stress tensor is given by:

T
p
ij ¼ 2lpD

p
ij þ kpD

p
iiDij: ð21Þ

Here Dp
ij is the rate of strain tensor:

D
p
ij ¼

1

2

Bu
p
i

Bxj
þ

Bu
p
j

Bxi

� �
; ð22Þ

and g0 is the radial distribution function (Lebowitz,

1964):

g0 ¼
1

eg
þ 3ep

2e2p
; ð23Þ
Dij is the Kronecker delta, and the Einstein summation

convention is applied for repeated indices. These

relations are often cast in terms of the coefficient of

bulk viscosity, which is defined as:

npukp þ 2=3lp: ð24Þ

The viscous stress tensor is composed of the second

viscosity coefficient component (kp) and the shear

viscosity component (lp):

kp ¼ dpqp

ffiffiffiffiffi
hp

p
ep

�
4 1þ eð Þepg0

3
ffiffiffi
p

p �
ffiffiffi
p

p

9 3� eð Þ

� 2
ffiffiffi
p

p
1þ eð Þ 3e� 1ð Þepg0
45 3� eð Þ � 8epg0 1þ eð Þ

15
ffiffiffi
p

p
�
;

ð25Þ

lp¼
dpqp

ffiffiffiffiffi
hp

p
2

ep

� ffiffiffi
p

p

3 3� eð Þþ
2

ffiffiffi
p

p
1þ eð Þ 3e� 1ð Þepg0
15 3� eð Þ

þ 8epg0 1þ eð Þ
5

ffiffiffi
p

p
�
: ð26Þ

An important parameter in these calculations is the

granular temperature (hp). It is a measure of the

fluctuating component of the particle velocity and is

defined as

hpu
1

3
hCp

i C
p
i i ð27Þ

Here the instantaneous velocity (ci
p) for the solid phase

has been decomposed into the average velocity or

dhydrodynamicT velocity ui
p and a fluctuating compo-

nent Ci
p. The averaging method, hi, is defined in the

Appendix B. To solve for the granular temperature a

transport equation for the granular energy must be

developed similar to the momentum equation above.

An algebraic approximation was developed by Syamlal

(1987) and is used in these calculations:

hp¼
� K1epD

p
ii þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1D

p
iiep

� �2þ4K4ep K2 D
p
iið Þ2þ2K3 D

p
iið Þ2

h ir
2epK4

8>><
>>:

9>>=
>>;

2

ð28Þ

where:

K1 ¼ 2 1þ eð Þqpg0; ð29Þ
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Fig. 2. Schematic representation of the conduit model: The bottom

boundary is specified as the lithostatic pressure at a depth of 8 km
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expands at the vent to permit choked flow. An outflow boundary

condition is specified 4 km above the vent. The modeled condui
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the centerline. The numerical grid is regular (square) and resolution
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K2 ¼
4dpqp 1þ eð Þepg0

3
ffiffiffi
p

p � 2

3
K3; ð30Þ

K3 ¼
dpqp

2

ffiffiffi
p

p

3 3� eð Þ 1þ :4 1þ eð Þ 3e� 1ð Þepg0
� ��

þ 8epg0 1þ eð Þ
5

ffiffiffi
p

p
�
; ð31Þ

K4 ¼
12 1� e2ð Þqpg0

dp
ffiffiffi
p

p ð32Þ

This equation assumes that the granular energy is

dissipated locally, and is most appropriate for fully

developed, simple shear flows (Syamlal, 1987;

Gidaspow, 1994). Non-steady forcing in the conduit

may give rise to advective transport of granular

energy that is not treated with this assumption.

The expression for the granular stress shown above

is complex but some intuition can be gained from

examining a simpler, non-rigorous treatment as

demonstrated by Gidaspow (1994). Assuming a

Taylor expansion can be performed, the momentum

flux yields the expression:

M xþ 1ð Þhci ¼ M xð Þhci þ lhci dM
dx

; ð33Þ

where

M ¼ mcð Þ: ð34Þ

Here l is the mean free path. Gidaspow (1994)

assumes in this simple case that the particle velocity

distribution is Maxwellian. That is, the particle

velocities vary randomly around a mean velocity.

Rearrangement, assuming constant density, and using

the observation that the change in momentum flux

equals the product of a viscosity and the strain rate

yields the expression:

l ¼ lqhci; ð35Þ

or that the viscosity is simply the product of the mean

free path, the density, and the average velocity. Using

the Maxwellian distribution to determine the average

velocity, this expression yields:

l ¼ 1

3
ffiffiffi
p

p
� �

qpdp
ffiffiffiffiffi
hp

p
: ð36Þ
In both the expression of Lun et al. (1984) and in the

simplified Gidaspow (1994) example, the granular

viscosity is proportional to the square root of the

granular temperature and diameter of the particle, and

motivates the examination of the different particle

sizes in this study.

Another parameter is the restitution coefficient (e),

which is a measure of the inelasticity of particle

collisions (e=1 is for a perfectly elastic collision). In

general, the coefficient of restitution is a function of

the material and velocity of collision, with higher

velocity impacts having lower coefficients of restitu-

tion (Johnson, 1985). It is difficult to parameterize the

restitution coefficient for pumice and droplet materi-

als. In this study a value of .8 was used and a

sensitivity analysis is presented below.

For the particle–gas momentum transfer above the

level of fragmentation the relation of Syamlal et al.
.

t

t
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(1993) was used which is based on correlations from

terminal velocity measurements:

I
gp
i ¼

3epegqg

4Vrdp
Cs
Dju

g
i � u

p
i j u

g
i � u

p
ið Þ � ep

B

Bxi
Pg;

ð37Þ

where Vr is the terminal velocity correlation (the ratio

of the terminal velocity of a group of particles to that

of a single, isolated particle) given by the expression:

Vr ¼ 0:5 A� 0:06Rep
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:06Rep
� �2þ0:12Rep 2B�Að Þþ A2

q
: ð38Þ

In this relation :

A ¼ e4:14g ; ð39Þ

B ¼
0:8e1:28g if egV0:85
e2:65g if egN0:85

:

(
ð40Þ

The single-sphere drag function and particle Reynolds

number are given by:

Cs
D ¼ 0:63þ 4:8ffiffiffiffiffiffi

Re
p

� �2
; ð41Þ

and

Rep ¼
dpjus � ugjqg

lg

: ð42Þ

2.4. Conduit parameters

Conduit flow requires that a large region of the

conduit be represented in the model even though the
Table 1

Summary of conditions in the upper conduit at steady statea

Simulation

name

dp
(m)

Sij ug
exit,max

(m/s)

ug
exit,avg

(m/s)

up
exit,ma

(m/s)

up
exit,avg

(m/s)

Pg
exit

(Pa)

lp
max

(Pa s)

Mass-Flux

(kg/m3 s)

DF

(m)

I (Viscosity) .0002 C 220.5 206.5 220.5 205.5 2.23�106 2.52�10�5 3.66�107 1620

II (Viscosity) .002 C 194.5 166.2 188.1 157.7 1.82�106 1.45�10�3 3.09�107 1440

III (Viscosity) .02 C 172.6 145.1 162.5 137.8 1.60�106 1.36�10�1 3.04�107 1280

I (Inviscid) .0002 C-L 220.7 216.3 220.6 214.1 2.22�106 0.0 3.71�107 1576

II (Inviscid) .002 C-L 204.8 195.1 197.2 185.3 1.80�106 0.0 3.63�107 1416

III (Inviscid) .02 C-L 182.4 171.9 170.1 163.3 1.59�106 0.0 3.60�107 1256

a The conduit diameter is 24 m and the height is 8 km in all simulations. dp is the particle diameter, Sij is the granular stress tensor

approximation used: C—collisional, C-L—collision-less, ug
exit,max and up

exit,max are the exit gas and particle centerline velocities, respectively

ug
exit,avg and up

exit,avg are the average exit gas and particle velocities, Pg
exit is the exit pressure, ls

max is the maximum granular shear viscosity; the

mass-flux is recorded at the vent, and DF is the depth of fragmentation.
phenomena of interest to this study are isolated to

the post-fragmentation region. This requirement

arises because the behavior at fragmentation is

altered by conditions deeper in the conduit such as

mass-flux and pressure. The idealized conduit

geometry is depicted schematically in Fig. 2 and is

24 m in radius and 8 km from base to vent.

Symmetry about the centerline is assumed. At the

bottom boundary the pressure is fixed at the

lithostatic pressure at a depth of 8 km (~212 MPa

assuming a crustal density of 2700 kg/m3). At the
,
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top of the idealized vent the cross-sectional area

increases to permit choked flow conditions. An

outlet boundary at atmospheric pressure is specified

4 km above the vent. Sidewall boundaries were

designated no-slip below the level of the conduit

vent. All simulations were solved on a regular grid

with numerical resolution of 4�4 m. Radial changes

in the volume fraction of different phases through

time can be examined in these two-dimensional

simulations. However, the resolution and imposed

symmetry at the center-channel may inhibit the

development of meso-scale structures in these

simulations (Neri and Gidaspow, 2000; Agrawal et

al., 2001). The conduit was considered isothermal at

850 8C, and initial water concentration was assumed

to be 4.5 wt.% water and is in rough agreement with

the water concentration of many rhyolitic eruptions

(Anderson et al., 1989). At the start of the

simulations all the water is assumed to be dissolved

in the magma and the pressure is magma-static.

Under natural conditions such an initial condition is

unlikely because a significant component of gas

would likely have already exsolved before reaching
20
-0.1 -0.05 0.0 0.05 0.1

x/L From Fragmentation Level

Inviscid Calculation Kinetic Calculation

Fig. 5. Centerline gas velocities near the level of fragmentation: Gas

velocities for both the inviscid (—) and granular effective viscosity

(- - -) calculations are shown for the simulations using 0.0002 m,

0.002 m, and 0.02 m particles.
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these depths. Hence, the details of the initial shock

are probably unrealistic. However, these simulations

proceed to a steady state quickly and this behavior

will be examined in detail. Fragmentation is assumed

to take place at the critical gas volume fraction of

0.75. Although the parameters selected for the

numerical simulations shown below were chosen

with guidance from natural constraints, we stress that

this study does not aim to model a particular

eruption, but rather to evaluate the sensitivity of

the different granular constitutive relations in a

general sense for rhyolitic eruptions.

2.5. Numerical treatment of the multi-fluid equations

The previous set of equations were solved using a

modified form of the MFIX (Syamlal et al., 1993)

multi-fluid code adapted for volcanic conduit condi-

tions. TheMFIX code uses an implicit multifield (IMF)

finite difference solution procedure (Harlow and

Amsden, 1975) developed for multiphase flow. This

code was validated for the industrial fluidized bed

application through comparison with experimental

results (O’Brien and Syamlal, 1991). A switching

function was incorporated to handle the magma/solid

particle transition. Below the critical volume fraction

the magmatic viscosity of Hess and Dingwell (1996) is

applied. Above the level of fragmentation, in the

atmosphere, the viscosity of the particle phase is either

a.) calculated from kinetic theory or b.) assumed

inviscid. The model was run on a single processor

with a 18�3000 grid (4 m�4 m resolution). Small

timesteps of ~1.0�10�4 s were required for conver-

gence. The model was tested on a Beowulf multi-

processor system, but the geometry and node config-

uration of this problem scaled poorly.
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3. Simulation results

Three different particle sizes (0.0002 m, 0.002 m,

and 0.02 m) were examined in order to compare the
Inviscid Calculation Kinetic Calculation
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Fig. 6. Centerline magma and particle velocities near the level of

fragmentation: Magma and particle velocities for both the inviscid

(—) and granular effective viscosity (- - -) calculations are shown

for the simulations using 0.0002 m, 0.002 m, and 0.02 m particles.

Below the 0.0 point, the magmatic rheology applies, and above this

level either kinetic theory or the inviscid assumption is applied.
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collisional granular stress to the collision-less

inviscid granular approximation. To reduce the

degrees of freedom, all other variables were held

constant between the simulations. Table 1 summa-

rizes some of the relevant results.

3.1. Initial shock

Immediately following rapid depressurization of

the magma, a shock develops that propagates up the

conduit. An exsolution front propagates back into the

conduit and the fragmentation zone develops. The

velocity of the multiphase mixture immediately

following the shock (both particles and gas) is slightly

greater in the simulations using kinetic theory for the

granular stress (Fig. 3). This pattern of greater

velocities in the initial shock for the kinetic theory

calculations was observed for the 0.0002 m, 0.002 m,

and 0.02 m grain sizes. This is likely the result of the

greater over-pressure that develops in these calcula-

tions in the initial stages of the eruption. As the

simulation proceeds, a quasi-steady state pressure is

approached that resembles similar results achieved

through the calculations of Papale and Dobran (1994)

with about 12% overpressure with respect to the

lithostatic gradient immediately below the fragmenta-

tion level (Fig. 4). The velocity following the shock for

the case of the 0.0002 m particles calculation was ~410

m/s (kinetic) and ~390 m/s (inviscid) above the level of

the vent. These velocities, however, are not sustained
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and the steady state velocities are approximately half

these values.

3.2. Quasi-steady state

Steady state conditions were reached on the order

of ~10 simulated seconds Since the diffusion of

volatiles was not accounted for, this time should not

strictly be comparable to eruptive timescales.

3.2.1. Below the fragmentation level

All the simulations produced similar results in the

portion of the conduit below the fragmentation level.

The fragmentation process for centimeter size par-

ticles, especially when the granular viscosity was

calculated, was less efficient in moving material away

from the fragmentation zone, and hence magma lower

in the conduit was at slightly elevated pressures. This

inhibited exsolution and consequently resulted in

slightly lower velocities (Figs. 5 and 6). There was

little differential velocity (V1%) of bubbles and

magma below the fragmentation level in any of the

simulations. However, there was higher pressure in the

center of the conduit, so that at any particular depth

there was greater exsolution at the edges of the

conduit. This process may have implications for gas

loss from the conduit walls as was pointed out by

Wilson (1998). Using an analytical calculation, Wilson

demonstrated that the effect of increasing viscosity

with height was sufficient to produce small lateral
4
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Conduit Exit Velocities

100

120

140

160

180

200

220

240

0.0001 0.001 0.01 0.1

Particle Size (m)

V
el

o
ci

ty
 (

m
/s

)

Particle Velocities (Inviscid
Calculation)

Particle Velocities (Kinetic
Theory Calculation)

Gas Velocity (Inviscid
Calculation)

Gas Velocity (Kinetic Theory
Calculation)

Fig. 8. Centerline conduit exit velocities: Gas and particle velocities

are shown for 0.0002 m, 0.002 m, and 0.02 m particle calculations.

Both the effective granular viscosity calculations and inviscid

calculations are shown.

J. Dufek, G.W. Bergantz / Journal of Volcanology and Geothermal Research 143 (2005) 113–132124
pressure variations in the conduit. This apparently is

the same mechanism at work in the present calcu-

lations as the regions of the greatest vertical viscosity

gradient (just below fragmentation) have the largest

horizontal pressure gradients (Fig. 7). The vertical

increase of viscosity with height is a result of volatile

exsolution at lower pressure (Hess and Dingwell,

1996). In these calculations the horizontal pressure

variation below fragmentation accounted for about a

3% drop from center-conduit to sidewall.

3.2.2. Above the fragmentation level

Fig. 8 shows the centerline conduit exit velocities

for gas and particles during these simulations. Both

the inviscid and granular viscosity calculations show

that the relative gas–particle velocity increases with
Table 2

Summary of particle timescalesa

Particle

size (m)

Average differential

velocity (m/s)

Particle Reynolds

number, Rep

CD
w CD

s CD
s/Vr

2 L

ti

0.0002 0.05 0.25 96 70 166 0

0.002 2.5 125 1.22 0.99 1.79 5

0.02 6.0 300 1.22 0.50 0.87 5

a Average differential velocity between the gas and solid phase is estim

divided by 2. Calculation of CD
w is given by 24/Rep for Rep b100 and 1.
increasing particle size. The eruptions with 0.0002 m

particles have particle and gas velocities that are

virtually indistinguishable, whereas the 0.02 m

particles, for the inviscid calculation, have center-line

vertical velocities of 182.4 m/s and 170.1 m/s for the

gas and particles, respectively.

The greater gas–particle differential velocity

observed for the larger particles can be interpreted in

terms of the aerodynamic response timescales of the

different particles. The particle response times can be

estimated from Eq. (2) and are 5.31�10�1 s for the

.0002 m particles, 5.31�10�1 s for the .002 m

particles and 5.31�10�1 s for the 0.02 m particles.

Eq. (2) applies for smooth, spherical particles with

small particle Reynolds numbers. The larger particles

considered here, 0.002 m and 0.02 m, have significant

differential gas–particle velocity and have particle

Reynolds numbers in excess of 100 (Eq. (42)).

Therefore, a more sophisticated approach is warranted

to estimate their response timescales. An aerodynamic

timescale can be developed from the drag relation

used in this multi-fluid study (Syamlal formulation,

Eq. (37)) that is based on terminal velocity correla-

tions and accounts for the volume fraction of particles

present. Neglecting the buoyancy term, this equation

recast is:

mp

dusi
dt

V
¼

3epegqg

4V 2
r dp

Cs
Dju

g
i � u

p
i j u

g
i � u

p
ið Þ; ð43Þ

where mp is the total mass of the solid phase in a

control (V). Velocities in this equation are the fluid,

or average velocities of the gas and particles. The

macroscopic density of the particles (mp/V) can be

written in terms of the single particle density, qp

using the volume fraction of the particles in the
ow Re aerodynamic

mescale, tp (s)

Wilson’s formulation

timescale, tp
w (s)

Syamlal’s formulation

timescale, tp
s (s)

.53 0.55 0.36

3 8.7 6.6

300 37 56

ated as the difference in the centerline velocities at the conduit exit

22 for higher Reynolds’ number (Wilson, 1999).
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control volume. Then rearrangement of the terms

gives:

dusi
dt

¼
3egqg

4V 2
r dpqp

Cs
Dju

g
i � usi j u

g
i � usi

� �
; ð44Þ

and a timescale of:

tsp ¼
4V 2

r dpqp

3egqgC
s
Dju

g
i � usi j

: ð45Þ

Assuming an average volume fraction of particles of

0.1 that is typical in these simulations, the corresponding
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timescale are 0.36 s, 6.6 s, and 56 s for 0.002 m, and

0.02m particles, respectively (assumptions used in these

calculations listed in Table 2). These timescale can be

compared to the single-particle drag formulation of

Wilson (1999) that considered particle roughness and

yielded timescales of 0.56 s, 8.7 s, and 36 s, respectively.

twp ¼ 4dpqs

3qgC
w
D ju

g
i � usi j

ð46Þ

The Wilson relation (Eq. (46)) and the Syamlal relation

(Eq. (45)) are equivalent in form for dilute conditions
n Vertical Velocity
es, Vent Conditions)
 Viscosity

15 20

Conduit Wall (m)

Gas Velocity

Particle Velocity

15 20

onduit Wall (m)

n Vertical Velocity
es, Vent Conditions)
scid

Gas Velocity

Particle Velocity

as (—) and particles (- - -) are shown for the granular viscosity (top)

e gas exits the conduit with greater velocity, and the relative velocity

the velocity of both phases decreases more rapidly further from the
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(egY1.0) and if CD
w=CD

s/Vr
2. The formulation for these

timescales and particle Reynolds number is summar-

ized in Table 2. The drag correlation developed by

Syamlal was used in this study, and hence these

timescales are of the most relevance in interpreting

our results, although qualitatively any of the drag

formulations would have produced differential par-

ticle–gas velocities for the 0.02 m particles for this

conduit geometry. Assuming an average transit time

on the order of 10 s from fragmentation to conduit exit

gives equivalent Stokes numbers of approximately

0.036, 0.66, and 5.59 for 0.0002 m, 0.002 m, and

0.02 m particles, respectively. Only the 0.0002 m

particles have sufficient time to respond completely to

the gas velocity by the conduit exit.

One key finding from our work is that including

the granular viscosity calculation decreases the

velocities of the particle and gas phases in

simulations with particles greater than about a

millimeter. At the conduit exit, this results in

centerline velocities of 172.6 m/s for the gas phase

and 162.5 m/s for the particle phase when 0.02 m

particles are considered. Again, the calculation with

0.0002 m particles shows little difference in

velocities when the granular stress is considered. It

should be noted that the constitutive equations for

the gas phase remained the same during all of the

simulations. When collisions produced a granular

viscosity, the particle phase was slowed, created a

greater magnitude drag force between the gas and

the particles, and, as a result, slowed the gas. Figs.

5 and 6 show the centerline vertical velocities of the

gas and particles in the near fragmentation area.

Immediately following fragmentation the particle

phase with the granular viscosity is slowed com-

pared to the inviscid particle phase for even the

0.0002 m particles. However, as the conduit exit is

reached the velocity difference is diminished for the

0.0002 m particles. For both the 0.002 m and

0.02 m particle sizes the viscous particle phase

remains slower than its inviscid counterpart from the

point of fragmentation to the conduit exit.

The centerline velocities are the maximum

velocities in the conduit for both the inviscid and

granular viscosity calculations. However, the radial

velocity profile at the vent of the conduit varies with

the assumption used for the granular stress. For

example, Fig. 9 shows the velocities at the vent for
the 0.002 m particles for both the inviscid and

granular viscosity cases. In general, the velocities are

greater in the inviscid case, and decrease less rapidly

in the annular flow region than do the velocities in

the granular viscosity case. This has a subtle effect

on the mass-flux calculations given in Table 1, and

results in greater flux of material for the inviscid

calculations. In many industrial riser flows a

negative annular velocity is often detected (Miller

and Gidaspow, 1992; Neri and Gidaspow, 2000)

which is not observed here. However, in the

experiments reported by Miller and Gidaspow

(1992) the negative velocity disappears for large

magnitude vertical velocities. Another mitigating

factor is the use of no-slip boundary conditions for

the gas and particle phase; one avenue of future

research will be to examine the effect of partial slip

boundaries on the particle phase (Neri and Gidas-

pow, 2000).

The spatial distribution of the volume fraction of

gas is also changed as a result of modifying the

particle size. The larger particles diminish the

vertical gradient of volume fraction of gas (Fig.

10) so that fragmentation occurs at a higher level in
t
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the conduit for the larger particle sizes. As a result,

a greater volume fraction of particles leaves the

conduit exit when larger particles are considered,

although with a lower velocity. The granular

viscosity calculation lowers the vertical gradients

in the volume fraction of gas in the near fragmen-
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region than in the center-conduit.
tation zone as is depicted in Fig. 11. The calculation

of granular stress also increases the near wall

concentration of particles compared to the inviscid

simulations (Fig. 12). This result is consistent with

the observation of core-annular granular flow in

industrial risers (Miller and Gidaspow, 1992).
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Fig. 13. Granular viscosity following fragmentation: Effective granular viscosity calculations are shown corresponding to the three particle sizes

0.0002 m, 0.002 m, and 0.02 m. Viscosity is given as the log of Pad s.
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The viscosities that result from the kinetic theory

calculation are depicted in Fig. 13. The sub-

millimeter particles have viscosities after fragmenta-

tion that are approximately 10�5 Pad s which is very

near to the viscosity of a gas phase at these elevated
temperatures. However, the 0.02 m particles produce

viscosities after fragmentation of about 10�1 Pad s.

The granular viscosity is highest immediately

following fragmentation and also near to the side-

wall boundaries. This is primarily a result of the



J. Dufek, G.W. Bergantz / Journal of Volcanology and Geothermal Research 143 (2005) 113–132 129
slightly higher volume fraction of particles in these

regions. Examination of Eqs. (26) and (28) shows

that as the volume fraction of particles goes to zero,

the granular viscosity must also go to zero. The

correlation of volume fraction to granular viscosity

has also been noted in the riser experiments (Miller

and Gidaspow, 1992). Modifying the coefficient of

restitution from 0.8 to 0.5 changed the granular

viscosity to ~15% lower values.
4. Conclusions

The results from this parametric study of the

granular stress in the context of a rhyolitic conduit

eruption show that the inclusion of a granular

viscosity calculation is probably not necessary for

particles of the order .0002 m or smaller. These

sub-millimeter particles have granular viscosities on

the order of 10�5 Pad s in the conduit setting.

However, 0.002 m and 0.02 m particles have ~5%

differences in the particle centerline velocity and

maximum granular viscosities of the order of 10�3

Pad s and 10�1 Pad s, respectively, when collisions

are considered.

The use of a two-dimensional model permitted the

calculation of radial variations in volume fraction and

velocity of gas and particles exiting the conduit. The

granular viscosity calculation predicted a greater

volume fraction of particles in the near-wall region

at the conduit vent than did the inviscid calculation.

The velocities at the vent for the inviscid calculations

were in general higher than the granular viscosity

calculations, and had a larger gradient Bv=Bx
��
in the

near-wall region. Two-dimensional conduit models,

such as the one used in this study, may be

implemented in the future to determine the structure

of more complex flows, evaluate the speed of

mixtures of gas/particles for irregular vent geometries,

and to evaluate phase distribution in conduits. To

extend this approach several aspects of the numerical

modeling deserve closer inspection including grid

refinement, lack of an imposed symmetry axis or fully

three-dimensional simulations, use of a turbulence

model, and exploration of partial slip boundaries for

conduit flow.

The majority of previous conduit models have

used smaller particles as part of the complete
atomization assumption (Papale, 2001). That is,

magmatic foam is assumed to be completely

destroyed in the fragmentation process. The grain

size distributions of many volcanic eruptions,

however, have abundant pumice clasts much larger

than the 0.0002 m limit (Bursik, 1998; Bachmann

et al., 2000). Papale (2001) demonstrated that this

inefficient fragmentation could significantly alter

conduit exit conditions by lowering velocities and

pressures. The results of this parametric study

show that inefficient fragmentation may also

produce larger pumices that are significantly

slowed through particle–particle interaction as well

as having a larger aerodynamic response time

(Eaton and Fessler, 1994; Burgisser and Bergantz,

2002). The viscous particle phase will slow both

phases relative to an inviscid calculation. Future

conduit modeling efforts may include modeling

multiple sizes fractions of pumices in a multi-fluid

effort similar to the work of Neri et al. (2002) for

pyroclastic flows. This study suggests that the size

fractions greater than a millimeter will produce at

least a ~5% change in the vertical centerline

velocity, and up to ~10% change in the average

vertical velocity if particle collisions are consid-

ered. The lower velocities may then modify the

eruptive behavior of the conduit system by

altering velocities and pressure of the different

phases through particle–particle and particle–gas

interaction.
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Appendix A

Notation

cI Instantaneous velocity (m/s)

CI Fluctuating velocity (m/s)

Ceq Equilibrium solubility of water (wt.%)

CD
s Particle drag function (Syamlal)

CD
w Particle drag function (Wilson)

Dij Strain rate tensor (s�1)

dp Particle diameter (m)

dbub Bubble diameter (m)

e Coefficient of restitution

f Velocity frequency distribution

fcoll Frequency distribution of particle collisions

g Gravitational acceleration (m/s2)

g0 Radial distribution function

Ii Inter-phase drag (N/m3)

l Mean free path (m)

mp Mass of particle (kg)

M Momentum Flux (kgdm/s1)

P Pressure (Pa)

R Exsolution rate (kg/m3d s)

Rep Particle Reynolds number

Sij Stress tensor (Pa)

tp Particle timescale (s)

T Temperature (K)

ui Average velocity (m/s)

Vr Ratio of the terminal velocity of a group of
articles to a single particle
p

DVg Volume fraction of water exsolved during one
ime-step (kg/m3 s)
t

Dt Time-step (s)

e Volume fraction

Dij Kronecker delta

k Second viscosity coefficient (Pad s)

n Bulk viscosity (Pad s)

l Shear viscosity (Pad s)

hp Granular temperature (m2/s2)

q Density (kg/m3)

Tij Deviatoric stress tensor (Pa)

Subscripts

g Gas phase

m Magma

p Particles

gp Gas–particle interaction

gm Gas–magma interaction

hi Average
Appendix B

As shown by Chapman and Cowling (1952) a

general transport equation for a quantity c is:

Bnhci
Bt

þ B

Bxj
nhccii � nFi

Bc
Bci

� �
¼

Z
c

Bf

Bt

� �
coll

dci

ðaÞ

where f is the frequency distribution of velocities, Fi

is specific-force (N/kg), n is the number of particles in

a control volume, ðBf =BtÞcoll is the rate of change of

the frequency distribution of particles as a result of

collisions, and the average for a quantity is defined as:

nhci ¼
Z

cf dci: ðbÞ

If no collisions occur, the source term on the right

hand side of Eq. (a) goes to zero. To obtain an

equation for the transport of momentum, let c=mcj,

where m is the mass of a particle. Using the fact that

the product of the mass and number of particles is

equal to the product of the density and volume

fraction of particles (mpn=qpep) and decomposing

the velocity, cj, into its fluctuating component, Cj, and

its average uj gives:

Bqeuj
Bt

þ B

Bxi
qeuiuj þ

B

Bxi
qehCiCji � qeFidij

¼ 0: ðcÞ

To obtain this result note that:

hcii þ Cið Þ hcji þ Cj

� �� �
¼ huiuj þ Ciuj þ Cjui þ CiCji

¼ uiuj þ hCiCji; ðdÞ

Buj

Bui
¼ l if i ¼ j; ðeÞ

and

Buj

Bui
¼ 0 if ipj: ðf Þ

A common first approximation of granular flows

(Chapman and Cowling, 1952; Gidaspow, 1994) is that

the velocity varies randomly about the mean velocity

(i.e. it has a Maxwellian velocity distribution). Hence,



J. Dufek, G.W. Bergantz / Journal of Volcanology and Geothermal Research 143 (2005) 113–132 131
it can be shown that the off diagonal terms of the hCiCji
tensor go to zero leaving the equation:

Bqpepuj
Bt

B

Bxi
qpepuiuj þ

B

Bxi
qpephCiCjiDij

� qpepFiDij ¼ 0; ðgÞ

where the term qpephCiCjiDij acts as the kinetic, or

translational, stress in the equation. Eq. (g) is the

equation of an inviscid granular material, and thus a

good approximation is that a collision-less granular

material is inviscid (Gidaspow, 1994).
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