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Abstract The development of particle-enriched regions (bed-load) at the base of particle-laden gravity cur-
rents has been widely observed, yet the controls and relative partitioning of material into the bed-load is poorly
understood. We examine particle-laden gravity currents whose initial mixture (particle and fluid) density is
greater than the ambient fluid, but whose interstitial fluid density is less than the ambient fluid (such as occurs
in pyroclastic flows produced during volcanic eruptions or when sediment-enriched river discharge enters
the ocean, generating hyperpycnal turbidity currents). A multifluid numerical approach is employed to assess
suspended load and bed-load transport in particle-laden gravity currents under varying boundary conditions.
Particle-laden flows that traverse denser fluid (such as pyroclastic flows crossing water) have leaky bound-
aries that provide the conceptual framework to study suspended load in isolation from bed-load transport. We
develop leaky and saltation boundary conditions to study the influence of flow substrate on the development of
bed-load. Flows with saltating boundaries develop particle–enriched basal layers (bed-load) where momentum
transfer is primarily a result of particle–particle collisions. The grain size distribution is more homogeneous
in the bed-load and the saltation boundaries increase the run-out distance and residence time of particles in the
flow by as much as 25% over leaky boundary conditions. Transport over a leaky substrate removes particles
that reach the bottom boundary and only the suspended load remains. Particle transport to the boundary is pro-
portional to the settling velocity of particles, and flow dilution results in shear and buoyancy instabilities at the
upper interface of these flows. These instabilities entrain ambient fluid, and the continued dilution ultimately
results in these currents becoming less dense than the ambient fluid. A unifying concept is energy dissipation
due to particle–boundary interaction: leaky boundaries dissipate energy more efficiently at the boundary than
their saltating counterparts and have smaller run-out distance.
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List of Symbols
mci instantaneous velocity of mth phase [m/s]
mCi fluctuating velocity of mth phase [m/s]
C1µ constant in fluid turbulence model (0.09)
C1ε constant in fluid turbulence model (1.44)
C2ε constant in fluid turbulence model (1.92)
C3ε constant in fluid turbulence model (1.22)
C S

D drag coefficient
mcp heat capacity [J/kg K]
pd particle diameter [m] (1.0 × 10−4 m and 0.01 m)
e restitution coefficient (0.65)
mei j strain rate [s−1]
Fc coefficient of friction (0.62)
gi gravitational acceleration [m/s2] (9.81 m/s2)
g0 radial distribution function
Hgp interphase heat transfer [W/m3]
H1 hindrance coefficient in particle–particle drag (0.3)
m Ii interphase momentum transfer [kg/m 3s]
p I2D second invariant of rate of strain tensor [s−2]
1k fluctuating kinetic energy of the gas phase [m2/s2]
m P pressure [Pa]
mq thermal heat flux [J/m2s]
Rkm ratio thermal conductivities
m T thermal temperature [K]
mUi average velocity [m/s]
mα volume fraction of mth phase
mε dissipation rate of fluctuating kinetic energy [m2/s3]
pκ granular conductivity [J s /m3]
pθ granular temperature [m2/s2]
mµ dynamic viscosity [Pa s]
mλ bulk viscosity [Pa s]
pϕ angle of internal friction (32◦)
� turbulence exchange terms
mρ density of mth phase [kg/m 3]
σk gas turbulence constant (1.0)
σε gas turbulence constant (1.3)
mτi j stress tensor [Pa]

Preceding superscripts
m = 1, 2, 3 (1 is gas phase, and 2 and 3 are particle phases)
p = 2 and 3 (particle phases)

Subscripts
i, j = 1, 2 (indices for spatial direction)

1 Introduction

Particle-laden gravity currents are generated in a number of natural settings including volcanic eruptions,
avalanches, and turbidity currents. Industrial accidents and explosions also have the potential to generate
small-scale particulate flows. Hence, understanding the dynamics of these flows is essential in mitigating
a wide range of environmental hazards. These flows are mixtures of particles with a carrier fluid (water or
gas), and the mixture has a greater density than the surrounding, particle-less, ambient fluid. Consequently,
these flows spread horizontally from their source, close to the ground. However, the interstitial fluid in many
particle-laden gravity currents is less dense than the ambient fluid (i.e., interstitial hot gas in pyroclastic flows
or fresh water in hyperpycnal turbidity currents). Hence, portions of the flow that become sufficiently dilute
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in the particle phase will undergo a buoyancy reversal. A substantial amount of research has been conducted
on gravity currents [1–6] although much of it has focused on homogenous fluids of two densities to create the
current. The Lagrangian, or local physics of particulate multiphase flows cannot be resolved by this approach.
For example, the heterogeneous concentration of particles during an ongoing flow, the phase-relative motion,
and dilution from particle deposition, are added complications that lead to emergent time and length scales in
particle-laden flows.

An important class of particle-laden gravity currents are those that traverse a much denser fluid. Examples
include pyroclastic flows from volcanic eruptions and avalanches (granular and powder snow) that encounter
lakes or oceans. A number of volcanic events near large bodies of water have resulted in numerous eruptions
producing over-water pyroclastic flows [7–10]. Real-time accounts of a few of these eruptions [7] and deposits
from others [9] indicate that a substantial amount of material can be transported great distances over water. For
instance, flows from Krakatau were reported 60 km from the source, and flows from the Kos, Greece eruption
produced deposits >40 km from their source [7,9]. Understanding the frequency and dynamics of these events
is hampered due to the fact that deposits from these eruptions are often submerged, and observations are sparse.

Analogue experiments [11] have elucidated several features of over-water particulate gravity currents,
including the bifurcation of some flows into below-water turbidity currents and more-dilute over-water flows.
However, there are a number of scaling issues that hinder the application of these experiments to natural events.
For example, it is difficult to produce high-Reynolds-number experimental flows. The particle response time
due to fluid forcing observed in natural flows (i.e., Stokes number) is also rarely matched in experimental flows
[12]. In addition, detailed optical measurements of real-time particle concentration in analogue experiments
are limited to dilute flows (less than ∼3 vol % [13].

The controls on the partitioning of particle mass into the dilute upper regions of a flow versus dense basal
regions are poorly known in particle-laden gravity currents. The relative importance of bed-load (where par-
ticles make multiple contacts with the bottom boundary) and suspended load (where particles are suspended
primarily due to turbulence) is difficult to distinguish from deposits generated by flows that have traversed
opaque boundaries (over land). However, most (if not all) of the bed-load of flows that traverse a leaky (over-
water) boundary will be removed. Hence this natural filter enables the study of suspended load transport in
relative isolation and should allow for estimates of the relative proportion of over-land pyroclastic flows that
are being transported by suspension due to grain collisions and turbulence.

Due to the experimental scaling difficulty, we have adopted a multiphase numerical approach to elucidate
the spatial and temporal heterogeneity that develops in particle-laden gravity currents. In this Eulerian–Eule-
rian approach, multiple particle species are treated as distinct, but interpenetrating, continua and grading and
segregation of particle size and volume fraction are calculated [14]. One novel aspect of this work is the
development of a leaky boundary condition utilizing a reconstruction of the local particle velocity probabil-
ity distribution in order to study flows without bed-load. For comparison a saltation boundary condition is
developed in which particles interact collisionally with the basal substrate. Using these contrasting bound-
ary conditions we evaluate the mass and energy transport of particle-laden gravity currents. In particular we
examine the relative importance of bed-load on mass flux and run-out of particle-laden flows.

This paper is organized as follows. In Sect. 2 a multiphase continuum model is developed for a bimodal
particle size population along with a framework for the scaling analysis employed. Section 3 derives leaky
and saltation boundary conditions using the mean and fluctuating components of the particle velocity field.
Section 4 describes the simulation conditions. Section 5 describes the results of the numerical simulations.
These results reveal the consequences of phase-relative motion for both saltation and leaky boundaries and
resulting instabilities. The relative importance of a basally concentrated zone on flow transport is emphasized.
Finally in Sect. 6 we discuss the dynamics and structure of particle-laden gravity currents in the context
of this numerical experiment, and compare the results to previous approximations employed to study their
transport.

2 Continuum multiphase model

Continuum multiphase models, initially developed in the fields of chemical and nuclear engineering [15–18]
have shown promise in their ability to predict the mesoscale clustering of particles in turbulent suspensions, and
similar approaches have been applied to volcanic eruptions [19–21]. In the multifluid approach each particle
phase and the carrier fluid phase has separate conservation equations for momentum, mass, and energy along
with closure assumptions for heat and momentum transfer within and between phases (summarized in Table 1
and in the Appendix).
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Table 1 Multifluid equations

Mean field equations

mci = 〈mci
〉+ mCi = mUi + mCi (1)

∑
mα = 1, (2)

Continuity

∂

∂t
(mαmρ) + ∂

∂xi
(mαmρmUi ) = 0, (3)

Momentum

∂

∂t

(mαmρmUi
)+ ∂

∂x j

(mαmρmUi
mU j

) = − ∂m P

∂xi
δi j + ∂mτi j

∂x j
+ m Ii + mαmρgi , (4)

Thermal Energy

mαmρmcp

(
∂m T

∂t
+ mU j

∂m T

∂x j

)
= − ∂mq

∂xi
+ Hgp. (5)

Fluctuating field equations
Turbulent kinetic energy, fluid phase

1k = 1

2

〈1Ci
1Ci
〉
, (6)

Turbulent kinetic energy equation, fluid phase

1α1ρ

(
∂1k

∂t
+ 1U j

∂1k

∂x j

)
= ∂

∂xi

(
1α

1µt

σk

∂1k

∂xi

)
+ 1α1τi j

∂1Ui

∂x j
+ �k1 − 1α1ρ1ε, (7)

Dissipation rate of kinetic energy, fluid phase

1α1ρ

(
∂1ε

∂t
+ 1U j

∂1ε

∂x j

)
= ∂

∂xi

(
1α

1µt

σε

∂1ε

∂xi

)
+ 1α

1ε

1k

(
C1ε

1τi j
∂1Ui

∂x j
− 1ρC2ε

1ε

)
+ �ε1, (8)

Pseudo-thermal equation, particle phases

pα pρ

(
∂ pθ

∂t
+ pU j

∂ pθ

∂x j

)
= ∂

∂xi

(
pα pρ pκ

∂ pθ

∂xi

)
+ pα pρ pτi j

∂ pUi

∂x j
+ �k2 − pα pρ pε. (9)

Preceding superscripts: m=1, 2, 3 (1 is gas phase, and 2 and 3 are particle phases) s, p = 2 and 3 (particle phases); subscripts:
i, j = 1, 2 (indices for spatial direction)

Both the mean and fluctuating velocities are calculated for the granular and fluid phases. For the simulations
in this study we have adapted the MFIX multiphase code for use on saltating and leaky boundary condition
flows [22] (Fig. 1).

It is instructive to render the continuity, momentum and energy equations in Table 1 dimensionless. We
define the following dimensionless parameters indicated by the prime superscript: nondimensional density,

ρ′ = ρ

ρamb
, (10)

where ρamb is the ambient, initial gas density, nondimensional pressure

P ′ = P

P0
, (11)
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Ff
Fc
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I. Leaky Boundary

Not to Scale
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Outflow 
Boundary

Outflow 
Boundary

Leaky or Saltation Boundary

A

B
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Fig. 1 Schematic representation of: A simulation conditions and B boundary conditions. A The particle-laden gravity currents
are introduced at constant flux from the left boundary and propagate to the right. Top and right side are outflow boundaries, and
the basal boundary reflects either a leaky condition or a saltating condition. B For leaky boundaries, the leak flux is calculated at
every time-step based on a reconstruction of the local particle velocity probability distribution. Particles interact with the saltating
boundaries through inelastic collisions and frictionally

where P0 is the initial gas pressure at the bottom boundary, a nondimensional velocity

U ′ = U

U0
, (12)

where U0 is the initial inlet velocity, a nondimensional temperature normalized by the initial ambient temper-
ature

T ′ = T

T0
, (13)

and a nondimensional shear and bulk viscosity

µ′ = µ

µ0
, (14)

and

λ′ = λ

µ0
, (15)

normalized by the initial gas viscosity. We define a length scale normalization H∗ based on the observation
that densimetric Froude numbers of approximately 1–1.4 have been measured in experiments [2,23] where
the densimetric Froude number is defined as

Frd = U√
g∗H

, (16)

where g∗ is the reduced gravity (g∗ = ρmix−ρamb
ρamb

g) and H is the gravity current height. Based on these
experiments, a Froude number of unity will be used for reference in these simulations, so that

H∗ = U 2
0 /g∗. (17)

While the emergent Froude number, based on the local velocity and particle concentration, can and does deviate
from unity, we use this as our reference state in the definition of our length scale normalization. Following
from this definition the dimensionless length scale is

x ′ = x

H∗ , (18)
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and the dimensionless fluid time scale is

t ′ = tU0

H∗ . (19)

In the following analysis we compare the fluid timescale,

τf=
H∗

U0
, (20)

to the aerodynamic response time of the particle phase (τp), the characteristic timescale of dispersal of thermal
energy from the particle phase to the fluid (τT), and a settling timescale (τ S

0.5). The aerodynamic response time
of the particle phase is given as

τp = 4Vr (pd)

3u
(

1ρ′) (1α
)
(pα) CD

, (21)

where Vr is the ratio of the terminal velocity of a group of particles to the single particle terminal velocity
(Appendix Eq. A20), u is the difference in the velocity of the particle and fluid phases, and CD is the drag
coefficient [24,25]. The timescale for the transmission of thermal energy from the dispersed phase to the
continuous phase is

τT = (pd)2 (1ρ
)

cp

6
(

Th
1k
)
(1 − 1α)Nu

, (22)

where Nu is an empirical Nusselt number correlation (Appendix Eq. A57) and Th
1k is the thermal conductivity

of the gas phase. Finally, we will also make use of reference time and length scales based on the settling
of particles under gravity. If a particle–fluid suspension is well mixed, and particle–particle interactions are
negligible, the particle volume fraction in the flow is expected to follow an exponential relation as a result
of loss by sedimentation [26,27], with the decay constant reflecting the height of the flow and the settling
velocity:

pα

pα0 ∝ e−(ws/H∗)t , (23)

where pα is the particle volume fraction, pα0 is the initial particle volume fraction, ws is the particle settling
velocity, and H∗ is the scale height of the flow. We define a decay half-life of the flow to be the time at which
the concentration in the flow decays to half the initial concentration. We also define L0.5 as the product of the
inlet velocity and the particle half-life and use this as our reference horizontal settling length scale so that our
dimensionless time and length settling scales are

τS
0.5 = −(H∗) ln(0.5)

ws
, (24)

t ′s = t/τS
0.5, (25)

and

L ′ = L/L0.5. (26)

The length scale L0.5 can be interpreted as the horizontal distance at which half the particles in the flow
will have been sedimented, if the only force acting on the particles is settling under gravity.

Using the above dimensionless quantities the continuity, momentum and thermal energy equations become

∂

∂t ′
(mαmρ′) + ∂

∂x ′
i
(mαmρ′mU ′

i ) = 0, (27)

∂(mαmρ′mU ′
i )

∂t ′
+ ∂(mαmρ′mU ′

i
mU ′

j )

∂x ′
i

=
[

m N
m M2

0

]
∂(m P ′)

∂x ′
i

+
[

1

Re

]
∂

∂x ′
i

[
mτ ′

i j

]

+
[

1

St

]
(1U ′

i − pU ′
i ) +

[
1

Fr2
d

]

αêg, (28)

mαmρ′mc′
p

[
∂m T ′

∂t ′
+ mU ′

i
∂m T ′

∂x ′
i

]
=
[

1

Pe

]
∂mq ′

∂x ′
i

+
[

1
Th St

] (
T ′

p − T ′
f

)
. (29)
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Table 2 Particle scaling

Name < u∗ >a 1Stb 2 St 1 Pnc 2 Pn 1�d
T

2�T
1,Th Ste 2,Th St

1L 1.9 0.0014 7.4 0.78 49.60 3.7e−4 1.9 1.7 × 10−3 3.8 × 10−3

2L 2.8 0.0014 7.4 0.53 33.66 3.7e−4 1.9 4.1 × 10−4 3.7 × 10−3

3L 3.3 0.00065 4.3 0.45 28.56 8.9e−5 0.58 1.6 × 10−3 3.6 × 10−3

4L 3.6 0.00065 4.3 0.42 26.18 8.9e−5 0.58 3.9 × 10−4 3.5 × 10−3

1S 2.3 0.0014 7.4 0.65 40.97 3.7e−4 1.9 1.7 × 10−3 3.8 × 10−3

2S 3.2 0.0014 7.4 0.47 29.45 3.7e−4 1.9 4.1 × 10−4 3.7 × 10−3

3S 5.4 0.00065 4.3 0.28 17.45 8.9e−5 0.58 1.6 × 10−3 3.6 × 10−3

4S 5.6 0.00065 4.3 0.27 16.83 8.9e−5 0.58 3.9 × 10−4 3.5 × 10−3

a Shear velocity
b Particle Stokes number, the number superscript refers to the two different particle phases
c Particle Rouse number, the number superscript refers to the two different particle phases; the Rouse number is discussed in
Sect. 6.2 to compare these calculations to a Roussean approximation
d Particle stability number, the number superscript refers to the two different particle phases
e Particle thermal Stokes number, the number superscript refers to the two different particle phases

Table 3 Simulation conditions

Name BC pαa Velocity (m/s) VFb H* Fr0‡
d Re Pe 1 M0

1L L 0.025 50 12.5 66.5 0.62 2.4 × 108 5.7 × 10−9 0.15
2L L 0.10 50 50 66.5 0.31 2.4 × 108 5.7 × 10−9 0.15
3L L 0.025 100 25 137.9 1.23 1.0 × 109 1.4 × 10−9 0.30
4L L 0.10 100 100 137.9 0.62 1.0 × 109 1.4 × 10−9 0.30
1S S 0.025 50 12.5 66.5 0.62 2.4 × 108 5.7 × 10−9 0.15
2S S 0.10 50 50 66.5 0.31 2.4 × 108 5.7 × 10−9 0.15
3S S 0.025 100 25 137.9 1.23 1.0 × 109 1.4 × 10−9 0.30
4S S 0.10 100 100 137.9 0.62 1.0 × 109 1.4 × 10−9 0.30

Boundary conditions: L leaky boundary, S saltation boundary
a Solid volume fraction
b Solids volume flux (m3/s)

Dimensional analysis of the momentum equation utilized the equation of state for the gas (ideal gas) and
for a granular material (see Appendix). Specifically, the m N term is dependent on the equation of state of the
material, and for the gas phase is dependent on the ratio of the heat capacities at constant volume and constant
pressure. For granular materials, m N is dependent of the volume fraction of particles and the coefficient of
restitution (Appendix Eqs. A60, A64).

The thermal energy equation has two dimensionless parameters, the Peclet number (Pe) and a thermal
Stokes number (Th St). The Peclet number is a measure of the heat transported by convection relative to heat
transport by conduction:

Pe = Th
1κ

H∗U0
, (30)

where Th
1κ is the thermal diffusivity of the gas phase. The thermal Stokes number is a ratio of the timescale

of transfer of thermal energy from the dispersed phase to the fluid phase relative the timescale of fluid motion
referred to previously (Eqs. 20, 22):

Th St = τT

τ f
. (31)

Initial Peclet and thermal Stokes numbers are given in Tables 2 and 3.
The momentum equation has four dimensionless terms that govern the advection of material: the Mach

number (m M0), the Reynolds number (Re), the Stokes number (St), and the Froude number (Frd). The Mach
number is the ratio of the phase velocity to its speed of sound,

mM0 = U0
ma

, (32)
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and the Reynolds number is the ratio of the inertial to viscous forces,

Re = ρ0U0 H∗

µ0
. (33)

To describe momentum transfer in these flows, and emergent instabilities, we will employ the Stokes num-
ber (St), and stability factor (�T ), and the gradient Richardson number (Ri). The Stokes number indicates the
particle response time scale relative to the time with which the particle interacts with the flow [28,29]:

St = τp

τf
. (34)

The large-eddy Stokes number for each particle size and for each flow condition is given in Table 2.
The interplay of steady forcing (gravity) and unsteady forcing (turbulent drag and particle–particle inter-

action) will impact the segregation or dispersal of particles. The Stokes number is a measure of the unsteady
forcing due to particle–fluid drag, and the Froude number scales with the gravitational forcing. The ratio St

Fr2 ,
which we will refer to as the stability factor (�T ), is a measure of the relative importance of these forcings
on the particle phase [29,30]. As emphasized by Raju and Meiburg [29] steady forcing such as gravity cannot
inherently create phase-relative segregation, and particles with large stability factor are more evenly distributed
when interacting with vortical structures compared to small stability factor particles. As the smaller stability
factor particles couple with vortical structures they are also more readily suspended and sediment at a lower
rate [29].

The gradient Richardson number is a measure of the stability of stratified flow (in this case stratified ver-
tically in particle volume fraction) compared to destabilizing shear due to the flow of these gravity currents.
The gradient Richardson number is given by

Ri = (−g/ρamb) (∂ρmix/∂y)

(∂U/∂y)2 . (35)

Here we define ρmix as the average of the particle and fluid density, although we stress that the particle and
fluid transport are solved with separate equations, and ρmix evolves in space and time. Flows with gradient
Richardson numbers greater than 0.25 typically are stable (the density gradient is sufficiently great that the
shear cannot overcome the stratification), whereas small- or negative-gradient Richardson numbers have unsta-
ble density gradients that promote the development of Kelvin–Helmholtz instabilities, and the entrainment of
the surrounding ambient fluid.

Constitutive relations are required to close the momentum and thermal energy equations. These constitutive
relations were chosen to match the conditions likely to occur in turbulent, particle-laden pyroclastic density
currents. For collisional transfer of momentum, the constitutive relation for the particle phase is provided by
kinetic theory similar to that used in the estimation of gas viscosities from molecular collisions [20,31]. This
constitutive relation assumes binary, inelastic particle collisions. The collision rate and stress in the granular
material depends on the fluctuating particle velocity. A separate transport equation for pseudo-thermal energy
is solved to determine the granular temperature (covariance of the fluctuating velocity) and close the granular
stress in dilute conditions. Pseudo-thermal energy is assumed to be advected by the mean flow and diffuses
along gradients in the granular temperature. Locally pseudo-thermal energy is produced by shear and by the
relative velocity between the particle and gas phases [18] and is dissipated by inelastic collisions and by vis-
cous damping by the carrier fluid. The production of fluctuating motions by gas–particle slip and dissipation
by viscous forces ensures that the granular pseudo-thermal energy equation is coupled to the carrier fluid. A
similar constitutive model was used by Benyahia et al. [32] in turbulent, particle-laden pipe flow and good
agreement was achieved between their simulations and the experiments of Jones [33].

At higher particle volume fractions, protracted frictional interaction of particles occurs and the frictional
and collisional stresses are assumed to be additive [34,35]. The frictional stress is developed using the postu-
late of a yield function and an associated flow-rule to relate stress and strain rate, and has been adopted from
theories of soil mechanics. The solids pressure in the frictional regime allows the solid phases to have some
compressibility, but provides a resisting force to prevent unphysical void fractions. In the limit of volume
fractions approaching the minimum void fraction both the frictional pressure and granular shear viscosity
approach infinity, which prevents further circulation of material.

A modified k–ε turbulence model proposed by Simonin is used to predict the Reynolds stresses produced
by fluctuating fluid motion [32,36]. This approach accounts for production and dissipation of turbulent energy
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Fig. 2 Comparison of lock-exchange gravity current at different grid resolution (768 × 92, 384 × 46 and 96 × 18) at time = 20.
The boundaries are no-slip and the lock-exchange configuration and units are equal to those used in Hartel et al. A density ratio
of ρ2 − ρ1/ρavg = 0.36 was used to achieve similarity of Reynolds number (∼710) compared to the experiments of Hartel et al.
This figure is directly comparable to Fig. 3 of the Hartel et al. study, and the front velocity is within 1% of the DNS front velocity

due to the presence of a dispersed phase [37]. Hence the random, or fluctuating motion of the continuous phase
and the dispersed phase are two-way coupled. In this two-equation turbulence model separate transport equa-
tions are formed for the turbulent (fluctuating) kinetic energy of the continuous phase and for the dissipation
rate of kinetic energy. The standard turbulent kinetic energy equation (Eq. 7) and dissipation rate equation
(Eq. 8) are modified by source terms to account for production and dissipation of turbulent energy as a result
of particle loading [37]. These particle–fluid coupling terms will result in decreased turbulent production in
the gas phase at higher particle concentrations, as was demonstrated by Benyahia et al. [32]. Hence, in regions
of particle stratification the flow will be stabilized against the large production of turbulent energy due to
shear. Wall functions and modifications for the near-boundary production and dissipation were implemented
for the near-wall laminar boundary layer. References [32,37,38] provide a thorough review of the two-way
coupled approach to fluctuating granular and turbulent motion, and the reader is referred to these references for
a detailed discussion of this approach. Again, this approach and model constants were validated by Benyahia
et al. [32] through comparison with experiments of particle-laden flows [33].

We conducted several other validation tests to evaluate this turbulent multiphase approach for particle-
laden gravity currents, including comparing the results to well-established direct numerical simulation results.
Hartel et al. [3] conducted a direct numerical simulation (DNS) of two fluid density currents in a lock-exchange
configuration with both free-slip and no-slip boundary conditions [3]. We repeated their two-dimensional (2D)
simulations (Figs. 3, 11 in Hartel et al.) with different grid resolutions using the Simonin k–ε formulation. The
original DNS of Hartel et al. was single phase (fluid) and we mimicked this by setting the Stokes number of
the particle phase to very small values (so the particles behaved as tracers for the fluid motion) and seeded the
particles such that the density variation between the two fluids was the same as in the Hartel et al. numerical
experiment. Selected results at different grid resolutions are shown in Figs. 2 and 3. For both the free-slip and
no-slip cases the gravity current front velocity was within 1% of the DNS results of Hartel et al. [3] for all res-
olutions tested. The details of the Kelvin–Helmholtz instabilities are different at lower resolution (small-scale
features fail to be resolved) although horizontally averaged densities remain comparable at 1/8 the resolution
used in Hartel et al. Lowe et al. [39], compared the results of intrusive gravity current experiments with the
DNS of Hartel et al. with generally good agreement, although Kelvin–Helmholtz billows in the DNS of Hartel
et al. were higher amplitude than in the experiments because the two-dimensional geometry of the DNS did
not allow for the three-dimensional breakdown of these turbulent structures. The distance that billows appear
behind the front of the head (x/H) in the k–ε simulations is ∼1.25–3.0, which compares well with the distance
measured by Lowe et al. [39] of 1.5–2.5. Both of these results are somewhat lower than the two-dimensional
DNS of Hartel et al. which had x/H of 2.5–4.0.

The thermal energy of the flow is described by a transport equation (Eq. 29) which includes the effect of
advection, conduction and interphase transfer of enthalpy. In order to simplify this analysis viscous dissipation
and radiative transfer of heat were not considered [40]. We also assume that heat transfer between different
solid phases is negligible. The fluid–solid heat transfer coefficient is a function of the local Nusselt number,
which reflects the ratio of convective heat transfer to conductive heat transfer. The Nusselt number depends on
the local particle volume fraction, Reynolds number and Prandtl number as reflected in the empirical correla-
tion (A57) [41]. The Nu number correlation is based on the experiments of Gunn [41] which included dense
to dilute flow (particle volume fraction (0.4–1.0) and Reynolds numbers in excess of 105.
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Fig. 3 Comparison of lock-exchange gravity current using free-slip boundaries at different grid resolution (768 × 92, 384 × 46
and 96 × 18) at time = 20. The front velocity is again within 1% of the Hartel et al. DNS values and the structure of the head
compares well with the DNS result. The horizontally averaged density is similar between the different resolutions although the
structure of the Kelvin–Helmholtz instabilities are not preserved as well at lower resolution

A binary mixture of two different particle sizes was used in the simulations in order to assess size sorting
in the simplest possible multi-particle system. Drag between particle phases is based on kinetic theory [16]
but modified by a hindrance term proposed by Gera et al. to account for protracted contact between particle
phases as close packing is approached (preventing phase-relative circulation at close-packing) [14]. Likewise
the radial distribution function must be modified according to the proportion and sizes of the different particle
phases [42].

3 Boundary conditions for leaky and saltation boundaries

In multiphase flows, separate boundary conditions must be specified for the continuous and particle phases.
At a rigid, stationary boundary a common approach is to invoke a no-slip boundary for the continuous or gas
phase, while the particle phases are modeled as a saltation or partial-slip boundary [43]. The shear associated
with the particle–wall interactions is a product of the collisional frequency, the tangential momentum transfer
per collision, and the concentration of particles near the wall (Eq. 36):

Fc =

collisional
frequency
︷ ︸︸ ︷
(3θ)1/2

s
×

tangential
momentum
transfer/collision
︷ ︸︸ ︷
φπρpd3(Up − Uw)

6
×

number
of
particles
︷︸︸︷

1

ac
, (36)

where φ is the specularity (the fraction of tangential momentum transferred, which depends on the surface
roughness), θ is the granular temperature, s is the average distance between the wall and particle, and ac is the
boundary area/particle. In the simulations presented here the specularity coefficient was held constant at 0.02
for consistency [32], although under natural conditions the specularity coefficient is likely to vary significantly
over different surface conditions. Averaged over many particles to form the continua, this relation becomes

Fc =
pαg0(3θ)1/2φπ(pρ)(Up − Uw)

6pα0 , (37)

where g0 is the radial distribution function (A27), and pα0 is the solid volume fraction at close packing.
This collisional force is converted into a condition for the particle phase velocity gradient and permits nonzero
velocities at the boundary. The fluctuating kinetic energy of the granular phase is also dissipated at the boundary
due to inelastic collisions as specified in the granular conductivity equation (A28) [43].

This saltation condition is imposed at the boundary by calculating the velocity gradient and using a ghost
cell method, so that

µ
∂u

∂y
= Fc. (38)
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Fig. 4 Example of a reconstructed velocity probability distribution. Both the mean velocity and granular temperature are shown.
All velocities below the leak velocity are capable of removing a particle from the flow, and integration of the shading region gives
the flux of particles from the system over the given time step

Using the defined dimensionless parameters, along with

θ ′ = θ

u2
0

, (39)

gives the following relation:

∂U ′

∂y′ = G Re
pαg0(3θ ′)1/2ϕπ(pρ′)(U ′

slip)

6pαcp
, (40)

where G Re is the granular Reynolds number, pαcp is the volume fraction of particles at close packing, and
U ′

slip is the dimensionless particle slip velocity at the boundary. The granular Reynolds number is defined as
in Eq. 33, although using the granular viscosity.

3.1 Derivation of a leaky boundary condition from the velocity probability distribution

For the dynamics of a particle-laden gravity current interacting with a leaky boundary, we consider the end-
member scenario in which all particles that reach the boundary are removed from the flow. In this way, only
transport of the suspended load of the flow is considered. This is similar to considering the particles as being
perfectly sticky (i.e., no possibility of saltation at the boundary).

Sedimentation from the flow requires consideration of both the mean and fluctuating component of a par-
ticle species’ velocity field. The nonzero variance (i.e., granular temperature) of the velocity for a collection
of particles can result in a finite sedimentation rate in regions of the flow where the mean vertical particle
velocity component is zero or even positive. As demonstrated in Eq. (9) the granular temperature, and hence
the particle velocity probability distribution, is influenced by collisions with other particles and drag with the
fluid. Local variation in the sedimentation rate is dependent upon this velocity distribution and the concentra-
tion of particles near the boundary. To examine this effect we can define the leak velocity (vleak) as the velocity
sufficient to remove a particle from a given height in the flow during a time interval:

vleak = l̄

t
, (41)

where l̄ is the average distance to the boundary in a control volume and t is a time interval. In Fig. 4 an
example leak velocity is plotted along with an example velocity probability distribution. All velocities less
than the leak velocity are sufficient to cause sedimentation through the leaky boundary (shaded area in Fig. 4).
Integration of the probability distribution from negative infinity to the leak velocity and multiplying this by
volume fraction of particles gives the local finite flux of particles from the flow. Again assuming that the
particle distribution is Maxwellian this gives the expression

γ =
pα

2

[
1 + erf

(
vleak − v̄√

2θ

)]
, (42)
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where γ is the volume fraction loss rate over the computational time step. In dimensionless quantities, the
fractional loss rate is given by

γ =
pα

2

[
1 + erf

(
v′

leak − v̄′
√

2θ
′
)]

, (43)

again using Eq. 39 for the dimensionless granular temperature.

4 Particle-laden gravity current conditions

4.1 Initial and boundary conditions

The simulation conditions are depicted in Fig. 1. A constant flux of particles and gas were introduced in
these two-dimensional simulations and was varied to reflect different particle volume fractions and velocities
(Table 3). In all simulations the gas and particles were introduced at 700 K into an atmosphere of 300 K. Gas
density was determined using the perfect gas relation assuming a dry atmosphere. Hence the interstitial gas of
these flows has a lower density than the ambient air; although the initial particle and gas mixture is denser than
surrounding atmosphere. The top and side boundaries are outflow boundaries and the bottom boundary was
either a saltation boundary (S) or a leaky boundary (L). The vertical grid spacing is refined at the base of the
flow and increases with height (H ′ = 0.0125–0.075 H ′ or 1–6 m) and the horizontal resolution is ∼0.001 L ′
(6 m). The physical domain of these two-dimensional simulations is 573 m × 15 km. Initial solid volume frac-
tions were either 0.025 or 0.1 in these simulations. Two grain sizes were used to assess sorting of different
grain sizes and densities: 95% of the flow was comprised of ash with diameter of 1.125 × 10−4 m and density
of 2,000 kg/m3 and 5% of the flow was comprised of denser particles (lithics) with a diameter of 0.01 m and
density of 2,700 kg/m3. The smaller particle size corresponds to stability factors of much less than 1 (�T � 1,
St � 1) whereas the larger and denser particles had stability factors of ∼1 (�T ∼ 1, St ≥ 1) (Table 2).

5 Structure of particle-laden flows

Although the size and details of the flow structure are different for every simulation, several generic flow
structures are common to all the simulations. The particle-laden gravity currents that traverse leaky boundaries
are more dilute on average than the saltation boundary flows. The run-out distance (the furthest extent of the
flow) in the leaky boundary flows is marked by the point at which enough particles have been lost that a
buoyancy reversal occurs and the flows become lighter than the ambient fluid. In contrast, flows that traverse
saltation boundaries develop a bed-load region enriched in particles. Bed-load particles eventually deposit, as
energy is lost due to inelastic collisions. The particle residence time in the saltating flows is greater than in the
leaky boundary situation and they produce longer run-out flows. In the following sections we will examine the
heterogeneity that develops for the saltation and leaky boundaries and how sorting, energy content and mass
flux are ultimately influenced by transport over the two substrates.

5.1 Density stratification

Gradients in the particle volume fraction develop due to the interaction of gravitational acceleration and the
turbulent suspension of different size particles, resulting in a more particle-enriched base as the particle-laden
flows continue to propagate away from the inlet (Fig. 5). The development of particle volume fraction gradients
has important implications for entrainment, particle–particle interaction in the more concentrated regions of
the flow, the development of bed-load for the saltating boundaries and particle loss at the leaky boundaries.
Spatially averaged particle volume fractions and horizontal velocity are remarkably similar for both saltating
and leaky boundaries in the upper regions of the flow (>10% of the scale height of the flow). In this region
particle–bed interaction has little direct influence on the dynamics of the flow.

In the upper regions of the flow particle settling results in portions of the flow becoming more buoyant
than the ambient atmosphere as the interstitial fluid is less dense than the ambient fluid (Fig. 5). Likewise
shear instabilities (Kelvin–Helmholtz) are promoted as density gradients between the flow and the ambient
atmosphere decrease, resulting in smaller Richardson numbers (Fig. 6). Both plumes and shear instabilities
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Fig. 5 Particle volume fraction for the binary particle mixtures with saltating (a, b) and leaky (c, d) boundaries for flow condition
1 (Table 2). a and c show the small stability factor particles, and b and d show the large stability factor particles. This figure
represents the instantaneous particle volume fraction at t ′ = 4. The leaky boundary flow has reached its maximum run-out and
at L ′ ∼ 1.6 where the flow becomes more buoyant than the ambient fluid. The saltating boundary condition flow continues to
propagate to the right with a greater amount of large stability factor particles than the leaky boundary counterpart. Shear and
buoyancy instabilities generate the eddies that rise above H ′ = 1 in these flows
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Fig. 6 Vertical profiles of flow condition 1 at L ′ = 0.5. a The vertical velocity for leaky (small dashed line) is compared to the
saltation (solid black line) and a Roussean profile (large dashed line). The Roussean profile is discussed in Sect. 6 b The vertical
volume fraction profile of the saltation, leaky and Roussean profile is shown. The base of the saltation curve shows order of
magnitude greater volume fraction in the region of bed-load transport

preferentially remove the fine-grain, small-stability-factor particles from the flows (Fig. 5). The larger grain
sizes (�T ∼ 1) that do rise above the scale height of the flow are typically confined to the core of the plumes
where the vertical velocity is the greatest or are centrifuged to the edge of the Kelvin–Helmholtz eddies.
However, the average volume fraction of particles above the neutral buoyancy height of the flow is less than
10−4 and the total volume fraction of particles above the scale height remains below 5% of the total flow.
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Fig. 7 Rate of particle loss and rate of development of bed-load and suspended load for flow conditions 1. a and b give the rate
of loss of particle 1 (small-stability-factor particles) and particle 2 (large-stability-factor particles), respectively. The rate of loss
of the small-stability-factor particles is close to exponential whereas the rate of loss of the large-stability-factor particles shows
a distinct inflection near t ′ = 0.5. c and d show the ratio of suspended and bed-load in the saltating boundary flows. Similar to
the loss of small-stability-factor particles, the volume of material in the bed-load grows exponentially with time

5.2 Dynamics and evolution of bed-load

Although the flows are similar above ∼10% the scale height of the flow, the boundary conditions provide
the template for the transport capacity and energy of the bed-load region of the flow. As particles migrate
to the base of the flow they are either sedimented through the leaky interface (simulations 1L–4L) or begin
interacting through saltation (simulations 1S–4S). When considering the saltation boundary at L ′ = 1, the
temporally averaged bed-load comprises 40–50% of the total load of the flow, and the majority of the energy
of the flow. However, the volume of particles in the bed-load increases with time as particles settle from the
suspended load. For example after t ′ = 4 greater than 80% of the volume of particles is in the bed-load (Fig. 7).

The rate at which particles enter the bed-load region of the flow is proportional to the settling velocity of
the particles. The transfer rate of the small stability factor particles is close to exponential (Fig. 7), and since
these particles represent 95% of the original volume fraction of the particles, the growth of the bed-load layer
is also exponential. However, the (�T ∼ 1, St ≥ 1) particles have a distinct inflection in the rate at which
they are transferred to the bed (Fig. 7). Spatially, the �T ∼ 1 particles are transferred from the suspended load
into the bed-load primarily from 0 to 0.5L ′ regardless of the initial velocity of the gravity current. In contrast,
the (�T � 1, St � 1) particles are transferred to the bed over a much wider area and are more sensitive to
the initial conditions of the flow (Fig. 8). For instance, the small-stability-factor (Table 2) particles remain in
suspension more efficiently for the high-Reynolds-number flows and sediment over a greater distance.

5.3 Vertical and lateral particle size sorting in transient flows

The greater sedimentation rate of the �T ∼ 1 particles leads to a much greater proportion of the small sta-
bility factor particles remaining in the flow for leaky boundary conditions. We compare sorting in these flows
normalized to their initial proportions:

γ ′ =
2α/1α

2α0/1α0 . (44)

The sorting coefficient (γ ′) is greater than one if enriched in the larger grain size relative to the initial
proportion and less than one if a greater amount of fine particles are present. In the negative log plots of Figs. 9
and 10, positive values correspond to an enrichment of fine material and negative values correspond to an
enrichment of the coarse material. For leaky flow boundary conditions the sorting coefficient is almost always
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Fig. 8 The progressive loss of particles for flow conditions 2 and 4. The individual lines represent the cumulative loss of material
at different times (in t ′ = 0.15 intervals). a and b apply to flow conditions 2 and c and d refer to the more energetic flow conditions
4. Particle loss is normalized by the total volume of particles introduced in the flow. In panel A the small-stability-factor particles
leak through the basal boundary from 0 to 1.6 at which point the flow becomes more buoyant than its surroundings. Panel b shows
the particle loss of the large stability factor particles which are mostly confined to less than L ′ = 0.5. For the more energetic inlet
conditions the small stability factor particles c are distributed over a much wider area, but again the large stability factor particles
D are mostly confined to less than L ′ = 0.5

less than 1, and on average the flow becomes progressively depleted in the large grain size with distance from
the inlet. However, there is significant structure to the sorting of particles at single instant in time (Fig. 9). The
head of the current typically has regions where the sorting coefficient approaches (but rarely exceeds) unity
for the leaky boundary flows.

In contrast, the bed-load region of the flow that develops in the saltation simulations has a sorting coefficient
much greater than unity initially, becoming progressively more mixed with time due to the accumulation of
small-stability-factor particles. The front of the these flows are also enriched in the large-stability-factor com-
ponent and is one of the few locations that has sorting coefficients greater than unity (Fig. 10). This effect can
be explained by the relative phase velocities of the two particle species. Strong vortices develop near the front
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Fig. 9 Flow traversing leaky boundary (flow conditions 1) and t ′ = 3. a The − log 10 of the particle volume fraction, b − log 10
of the collision rate/particle, c − log 10 of the Bagnold number, d − log 10 of the sorting coefficient (positive values indicate
enrichment of fine particles, negative values indicate enrichment of coarse material relative to the inlet values. Except near the
inlet, the sorting coefficient remains positive (fine enriched) although portions of the head of the flow have near-zero values

Fig. 10 Flow traversing saltating boundary (flow conditions 1) and t ′ = 3. a The − log 10 of the particle volume fraction,
b − log 10 of the collision rate/particle, c − log 10 of the Bagnold number, d − log 10 of the sorting coefficient (positive values
indicate enrichment of fine particles, negative values indicate enrichment of coarse material relative to the inlet values). Fig. 9
shows that for the same inlet flow conditions the volume fraction and collision rate are much greater at the base of the saltating
flows compared to the leaky boundary flows (Fig. 8). The saltating flows are also more efficient at transporting the large-stability-
factor particles (d) and near the front of the flow there are even regions where there is an enrichment of course material relative
to inlet conditions (outlined in black)
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Fig. 11 The vertically and temporally averaged sorting coefficient at L ′ = 0.5 for flow conditions 1–4 and saltating (dark circles)
and leaky (open circles) boundary conditions. The numbers to the right of the circles indicate the inlet conditions (Table 2). The
sorting coefficients are plotted relative to their inlet Froude numbers. The leaky boundary sorting coefficient is sensitive to the
inlet Froude number, whereas the inlet flow energy has little influence on the sorting coefficient for the saltating boundary flows

of the flow exert drag on the particles. This non-steady forcing influences the small-stability-factor particles
to a greater degree than the larger-stability-factor particles, and hence the larger grain sizes have a tendency to
accumulate at the front of the granular flows. Likewise, the elutriation rate of fine particles in buoyant plumes
is much greater than the large particles and so dilution near the top of the current head will preferentially
remove the fine component. In the leaky flows the elutriation rate is outpaced by sedimentation through the
basal boundary (Fig. 8). However for saltation boundary conditions the energetic front of the flow has sufficient
shear that little of the material is deposited and hence the only major particle sink from the current head is
elutriation which preferentially removes fine particles.

The vertically and temporally averaged sorting coefficient < γ ′ > at L ′ = 1 for the different flows is
shown in Fig. 11 as a function of the densimetric Froude number. In general the sorting coefficient is higher for
the saltation boundaries than for leaky boundary flows. The fundamental differences in the sorting behavior
between flows that have leaky or saltation boundaries is due to the longer residence time of particles in the
saltation flows. In saltating flows, particles will have multiple encounters with the base and can be remobilized
due to shear and particle collisions after encountering the base of the flows. This is modeled as a partial slip
velocity (Fig. 6). As larger particles can remain mobilized in the flow due to saltation, the downstream volume
fraction is less diminished relative to leaky boundary flows. For the leaky flows the mean particle sorting at
L ′ = 1 is largest for the highest initial kinetic energy. Vertically averaged sorting in saltation flows is much
less sensitive to their initial kinetic energy, although Figs. 9 and 10 demonstrate that they are much more
heterogeneous in particle sorting vertically and laterally compared to leaky flows.

5.4 The influence of bed interaction on run-out distance

The run-out distance and mean residence time of particles in a flow is controlled by the complex interplay of
flow dilution and buoyancy and energy dissipation due to particle–particle and particle-boundary interactions.
For the leaky boundary flows, the run-out distance is ultimately a result of flow dilution and buoyancy reversal.
While suspension and entrainment mechanism also operate in saltation boundary flows, inelastic collisions in
the bed-load determines the maximum run-out of the ground-hugging portion of the flow. Although inelastic
collisions and dilution due to particle loss are distinct physical mechanisms, they can both be described by
energy dissipation relative to the total kinetic energy budget of the flow. In the case of leaky boundary conditions
kinetic energy is removed from the flow due to mass loss (i.e., particles settling through the leaky boundary
are removed from the flow). However, particles that reach the boundary in saltation flows lose only a portion
of their energy for every particle–wall interaction. While it is true that after the particles have reached the base
of the saltation flows they dissipate energy due to inelastic collisions with other particles and the wall, the rate
at which this occurs is necessarily slower than if all energy from a particle is lost the instant it touches the
bottom boundary as in the case of the leaky boundary. Particle-boundary energy dissipation was greater than
any other mechanism. Over a fluid timescale, the leaky boundary dissipates kinetic energy more efficiently
than saltation and this correlates well with run-out distance (Fig. 12).

For both flow conditions 1 and 2, the maximum run-out distance is greater for the saltation boundary flows
than for the leaky boundary flows. Similarly, the residence time of an average particle is much longer for all
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Fig. 13 The dissipation of kinetic energy during a fluid timescale at the boundary versus the residence time (until 10% of the
volume remains). The dissipation rate is normalized by the total kinetic energy and fluid timescale, and the 10% residence time is
normalized by the settling velocity of small stability factor particles. The residence time of particles correlates with diminished
dissipation rate. Particles in the saltating boundary flows have a greater residence time than their leaky flow counterparts, but the
residence time in the saltating flows is relatively insensitive to the inlet conditions explored

four flow conditions if saltation boundary flows are considered, although the differences are minimized for
flows with the greatest initial kinetic energy (Fig. 6). One measure of this is to examine the mean residence
time of particles until the flow has decayed to 10% its initial volume flux normalized relative to the settling
timescale of an average particle. As the flows become more dilute (or have lower inlet energy) this measure of
residence time approaches unity for the suspended load (Fig. 13). As both Reynolds number and concentration
increase the suspended load portion of the flow has a greater residence time due to turbulent suspension and
to particle–particle collisions.

6 Discussion

6.1 Dominant modes of momentum transfer

The development of bed-load in particle-laden flows alters the primary mechanism of momentum transfer
from particle-fluid drag to particle–particle collisions. This is depicted in Figs. 9 and 10 where, for x ′ < 1,
the collision rate per particle is over an order of magnitude greater in the saltation boundary conditions. A
conventional measure of the collisional redistribution of momentum relative to particle–fluid drag is given by
the Bagnold number:

NBag =
pαρs D2η

(1 − pα)µ
, (45)

where η is the strain rate and µ is the viscosity of the interstitial fluid. Based on empirical observations, Iverson
[44] suggested that flows with Bagnold numbers greater than ∼ 200 would have a greater momentum transfer
due to particle collisions rather than particle–fluid drag. Although this transition is not rigorously defined, the
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saltation boundary flows clearly have regions of the flow with a Bagnold number greater than 200, whereas
the densest portions of the leaky boundary flows are less than NBag = 200 (Figs. 9c, 10c).

One of the primary ways that the development of bed-load, and the resulting increase in particle–particle
collisions, manifests itself is in the mixing of different particle species. In the suspended-load portion of a flow,
particles of different size and density, and hence with different stability factors and Stokes numbers, will be
become segregated relative to each other. This is particularly relevant in situations similar to these simulations
where the stability factor is much less than 1 in the case of the smallest particles and near to unity for the
largest particles. As shown in Fig. 5 the large-stability-factor particles are confined to the lower portions of
the flow, and are nearly absent in the formation of mesoscale structures due to the development of shear and
buoyancy instabilities. Hence, the leaky boundary flows that have only suspended-load transport are efficient
at unmixing different grain sizes and producing sorting that reflects energy of the flow (Fig. 11). For instance,
lower inlet Froude numbers produced smaller sorting coefficients (more poorly sorted) at the flow scale length
(L ′ = 1) for leaky boundary flows (Fig. 11).

In contrast, the inlet kinetic energy (and inlet Froude number) and sorting number at L ′ = 1 are poorly
correlated for saltating flows (Fig. 11). Particle–particle collisions and particle–boundary collisions can keep
multiple grain sizes mobile, mixing particles with different stability factors. This result is consistent with the
observation that in channel flow particle–wall and particle–particle collisions have a tendency to flatten the
particle concentration across the channel [45,46]. Once particles enter the bed-load region they are homoge-
nized by the increased number of particle collisions, and mesoscale structure and fluctuations initially present
in the suspended portion of the flow are subdued. The bed-load mixing mechanism likely plays a role in the
development of massive, homogenous pyroclastic flow deposits. Changes in vertical grading in flows that have
developed bed-load transport reflect the integrated upstream mean particle supply to the bed-load region, rather
than local mesoscale turbulent structure of the flow.

6.2 The role of particle stratification compared to homogeneous flows

Particle-laden flows are manifestly heterogeneous in particle volume fraction and particle size sorting. A com-
parison between these simulated flows which track these heterogeneities and simplified approaches yields
further insight in the relative importance of particle volume fraction heterogeneity on flow transport. Two
common approaches to the treatment of particle-laden gravity currents is to either assume homogeneity in
particle volume fraction within the current or to assume particle volume fraction gradients based upon the
advection–diffusion of sediment (i.e., the Rouse approach).

For homogeneous transport, one approach to the prediction of the evolution of the current is to assume
constant volume (no entrainment) and a front condition (usually Frd ∼ 1). This approach is sometimes called
the box-model approach due to the box-shaped profiles produced with these assumptions [47,48]. Using a box-
model approach, a run-out distance can be predicted at the point at which enough particles have sedimented
to generate a buoyancy reversal. Key assumptions in this approach are that sedimentation rate is given by the
settling velocity, once removed from the flow particles cannot become resuspended, and there is no cooling
or entrainment (both of which would lower the interstitial gas density). Modifying the approach of Dade and
Huppert [47] to a 2D current gives the following relation for current length:

R = − ln
(

pα/pα0
)

q̇

ws
, (46)

where q̇ is the constant volume flux (u · h). When the mixture density equals the ambient fluid density∑
p ρpαp + ρintαg = ρamb, the current will begin to ascend.
Run-out distances using the box-model approach were shorter than predicted in the simulations (Fig. 12)

compared to either the saltating boundary flows or the leaky boundary flows. The assumptions used in develop-
ing the box-model approach emphasize suspended load conditions. For instance, the Frd ∼ 1 front condition
most clearly matches the results of the leaky boundary, suspended load flows. In contrast, the densimetric
Froude number deviates significantly from unity when an interacting bed-load develops. The differences in
run-out distance between the leaky boundary flows and the box-model approach can principally be attributed
to cooling and entrainment, increasing the average gas density in the simulations. Hence neutral buoyancy
is reached for a much more particle-dilute flow which gives the flow a greater period of time to propagate.
For example, the mean temperature below the scale height is 412 K at the maximum run-out distance for flow
conditions 1 and leaky boundary conditions. The mean volume fraction below the scale height at this location
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is 1.6 × 10−4. In contrast, without cooling or entrainment the interstitial gas density remains constant and the
particle volume fraction at neutral buoyancy is 3.3 × 10−4, or nearly 200% greater particle volume fraction
than when considering entrainment. Hence, if the interstitial fluid is less dense than the ambient fluid, the
run-out distance will be linked closely with entrainment efficiency. (In this case the box model is a proxy for
completely inefficient mixing.) Particle sedimentation decreases the Richardson number (Fig. 6) and lowers
the required shear for efficient entrainment, and incorporating this effect will lead to run-out predictions of
over a factor of 200% different if vertical mixing does not occur.

Particle stratification models based upon mixing-length approximations to turbulent flow have been pro-
posed in a number of settings [49–51]. Using an eddy diffusivity proportional to the scale height of the flow
(and assuming unidirectional, open-channel flow at equilibrium) yields a Roussean particle volume fraction
profile:

pα = αb

(
(H − H ′)/H ′

(H − b)/b

)Pn

, (47)

where b is reference height near the base of the flow, αb is the particle volume fraction at b, and Pn is the
Rouse number (Pn = ws

κu∗ , where ws is the settling velocity, u∗is the shear velocity, and κ is the von Karman
constant). Valentine [51] applied this concept to pyroclastic flow transport, and predicted vertical gradients in
the particle volume fraction. The Roussean particle volume fraction profile and open-channel velocity profiles
using average shear velocity are compared to the volume fraction and velocity profile of these simulations at
L0.5 (Fig. 6). As expected, the particle volume fraction in the Roussean profiles deviates significantly compared
to the bed-load region of the saltation simulations due to the equilibrium assumption of balanced vertical par-
ticle flux inherent in the Roussean derivation. The vertical particle volume fraction gradients in the Roussean
profile are also considerably smaller than leaky boundary condition simulations. The shear instabilities and
entrainment at low Richardson numbers at the top of these currents helps to explain the differences between
an equilibrium Roussean profile and the leaky gravity currents. The open-channel assumption of the velocity
profile for the Roussean derivation predicts maximum velocity at the top of the current, whereas the simula-
tions predict maximum velocities at approximately 1/3 the current scale height, similar to experimental gravity
currents [52].

6.3 Development of bed-load and implications for changing boundary conditions

Bed-load material is continuously supplied from the suspended-load region, which suggests that this layer
can reform after changes in boundary conditions (i.e., from leaky to saltation boundaries). As an example,
using inlet conditions 1 (Table 3) a simulation was conducted with leaky boundaries to L ′=1 and saltating
boundaries thereafter. By L ′ = 1.1 scale length units a particle-rich bed-load region had developed after
crossing the transition for leaky to saltating boundaries. This bed-load region was characterized by increased
particle–particle collisions relative to its completely leaky flow counterpart and Bagnold numbers in excess of
1,000. However, as most of the large-stability-factor particles had been removed during transit over the leaky
boundary condition, the vertically averaged sorting coefficient of this bed-load region was ∼ 0.04 at L ′ = 1.1
and much less than a completely saltating boundary (Fig. 10). These simulations provide an important caveat
in the interpretation of well-sorted deposits; they can imply particle capture upstream of deposition rather than
locally dilute, suspended load conditions. Besides the transition from leaky to saltating boundaries, changes
in topography may also alter the transition from suspended load to bed-load in particle-laden gravity currents
if the bed-load is removed after encountering particularly steep landscapes [10,51,53,54]. Understanding the
removal and formation of bed-load determines the amount of force that these currents supply to the near-bed
region and determines how hazardous a given flow will be to near-bed structures and populations.

7 Conclusions

The formation of bed-load transport in ground-hugging particle-laden flows is a natural consequence of par-
ticle–bed interaction. The proportion of bed-load material is continuously evolving as particles that can no
longer be suspended are transferred to the basal region of the flow. Saltation due to inelastic collisions at the bed
results in increased particle volume fractions near the bed and a greater number of particle–particle collisions.
These collisions homogenize the concentration of different size particles and can result in greater residence
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time of particles in the flow. Entrainment and particle–fluid drag are capable of resuspending some material
from the bed-load at the front of the current, and the preferential removal of fine material leaves portions of
the bed-load at the front of the flow enriched in coarse material. The increased mobility of particles at the base
of the flow also results in greater run-out distance of these flows relative to completely leaky conditions by as
much as 25%.

When flows encounter a leaky boundary (such as traversing water) bed-load formation is inhibited and
a more dilute suspended-load transport develops. Particles are organized into mesoscale structures due to par-
ticle–fluid interaction, and particles with different Stokes numbers are readily sorted relative to each other.
The dilution in particle volume fraction that develops at the upper interface of these flows encourages shear
instabilities and buoyancy reversal, and this results in entrainment of ambient fluid in the flow. Ultimately
these flows become so dilute that they can no longer propagate as ground-hugging currents. Hence, the dichot-
omy of dense, bed-load transport and completely suspended load transport can be explained by particle–bed
interaction and this interaction is one of the principle factors determining run-out length and order–disorder
in deposits.
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Appendix

Momentum equation constitutive relations

• Stress tensor

mτi j = 2mαmµmei j + mα

(
mλ − 2

3
mµ

)
∂mUi

∂xi
δi j , (A1)

• Rate of strain

mei j = 1

2

(
∂mUi

∂x j
+ ∂mU j

∂xi

)
. (A2)

Granular phases

• Total granular pressure

p P = p P f + p Pk/c (A3)

• Total bulk viscosity

pλ = pλf + pλk/c (A4)

• Total shear viscosity

pµ = pµf + pµk/c (A5)

• Kinetic–collisional pressure

p Pk/c = pα pρ pθ
[
1 + 2pαg0(1 + e)

]
(A6)

• Total kinetic–collisional viscosity

pµk/c = pα pρ
(pνkin + pνcoll) (A7)

• Kinetic shear viscosity

pνkin =
[

2

3
k12ηt + pθ(1 + ζc2

pαg0)

]
τp (A8)
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• Collisional shear viscosity

pνcoll = 8

5
pαg0

(1 + e)

2

(
pνkin + d

√
pθ

π

)

(A9)

• Collisional bulk viscosity

pλ = 5

3
pα pρ pvcoll (A10)

• Frictional pressure

P f = a f s
(1αmax − 1α)bfs

(1α − 1αmin)bfs
, for 1αmin < 1α < 1αmax, else P f = 0 (A11)

• Effective viscosity frictional regime

pµf = P f sin2 pφ
√

4 sin2 pφ p I2D +
(

∂ pUi
∂xi

)2
(A12)

• Bulk viscosity frictional regime

pλf = −2

3
pµf (A13)

Fluid phase
• Total shear viscosity

1µ = 1µmol + 1µt (A14)

• Molecular viscosity

1µmol = 1.7 × 10−5
( 1T

273

)1.5
(

383
1T +110

)

(A15)

• Effective turbulent viscosity

1µt = 1ρCµ

(
1k
)2

1ε
(A16)

• Bulk viscosity

1λ = −2

3

(1µ
)

(A17)

• Particle–gas drag

1 Ii = β
(1Ui − pUi

)− pα
∂

∂xi

1 P (A18)

where

β = 3pα1α1ρ

4Vr d
Cs

D

∣∣1Ui − pUi

∣∣ (A19)
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• Ratio of terminal velocity of a group of particles to the single-particle terminal velocity

Vr = 0.5(A − 0.06Rep +
√

(0.06Rep)2 + 0.12Rep(2B − A) + A2 (A20)

where

A = 1α4.14 (A21)

B =
{

0.81α1.28 if 1α ≤ 0.85
1α2.65 if 1α > 0.85

(A22)

• Drag coefficient

Cs
D =

[

0.63 + 4.8
√

Rep

]2

(A23)

• Particle Reynolds number

Rep = d
∣∣pUi − 1Ui

∣∣1ρ
1µ

(A24)

• Momentum transfer between particle phases

p Ii = −Fsp(
pUi − sUi ), s 
= p (A25)

• Coefficient of interphase force between particle phases

Fsp =
3(1 + e)

(
π
2 + Fc

π2

8

) (
2α
)(

2ρ
)(

3α
)(

3ρ
)
(2d + 3d)2g0(

2Ui − 3Ui )

2π
((

2ρ
)(

2d
)3 + (3ρ)(3d

)3) + H1 P f (A26)

• Radial distribution function

g0 = 1
0α

+ 3
(

1d
)(

2d
)

(
0α
)2(1d + 2d

)

[ 1α

1d
+

2α

2d

]
(A27)

Turbulence and pseudo-thermal energy closure equations
• Granular energy conductivity

pκ = pα pρ(pκkin + pκcoll) (A28)

• Kinetic component of granular energy conductivity

pκkin =
(

9

10
k12ηt + 3

2
pθ(1 + vc

(pα
)
g0)

)(
9

5t x
12

+ ξc
ptc

)−1

(A29)

• Collisional component of granular energy conductivity

pκcoll = 18

5

(pα
)
g0

(1 + e)

2

(
pκkin + 5

9

(pd
)
√

pθ

π

)

(A30)

• Dissipation of particle fluctuating energy

pε = 12(1 − e2)
(pα
)2(pρ

)
g0

pθ3/2

pd
(A31)
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• Turbulence exchange terms

�k1 = β
(
k12 − 2

(1k
))

(A32)

�ε1 = C3ε

( 1ε

1k

)
�k1 (A33)

�k2 = β(k12 − 3
(pθ
)
) (A34)

k12 = ηt

1 + (1 + X p1)ηt
(2
(pk
)+ 3X21

pθ) (A35)

• Particle relaxation timescale

t x
12 =

pα pρ

β
(A36)

• Energetic eddies times scales

1t t = 3

2
Cµ

1k
1ε

(A37)

• Fluid Lagrangian integral time scale

t t
12 = t t

1√
1 + Cβξ2

r

(A38)

• where

ξ
p
r = 3|Ur |2

2
(

1k
) (A39)

Cβ = 1.8 − 1.35cos2(θ) (A40)

• Collisional time scale

ptc =
pd

6(pα)g0
√

16pθ/π
(A41)

1
pt

= 2

t x
12

+ σc
ptc

(A42)

• Collisional constants

ζc2 = 7
2

5
(1 + e)(3e − 1) (A43)

vc = (1 + e)2(2e − 1)/100 (A44)

ζc = (1 + e)(49 − 33e)/100 (A45)

σc = (1 + e)(3 − e)/5 (A46)

X p1 =
pα pρ

1α1ρ
(A47)

Thermal energy constitutive relations
• Thermal conductivity

m
Thk = mkef f + mkt (A48)

• Effective conductivity of the gas phase

1keff = (1 −
√

1 − 1α)

⎛

⎝0.025

√
1T

300

⎞

⎠ (A49)
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• Turbulent conductivity of gas phase

1kt =
(

1α
)(

1cp
)(

1µt
)

Pr
(A50)

• Effective conductivity of the particle phases

pkeff = 1
Thk

[
φk Rkm + (1 + φk)λrm√

1 − 1α

]
(A51)

where

λrm = −2

(1 − b/Rkm)

[
(Rkm − 1)b/Rkm

(1 − b/Rkm)2 ln

(
b

Rkm

)
+ b − 1

(1 − b/Rkm)
+ b + 1

2

]
(A52)

b = 1.25

[
1 − 1α

1α

]10/9

(A53)

Rkm =
pk
1k

(A54)

• Interphase heat transfer

Hgp = −γ 0
gp(

pT − 1T ) (A55)

where

γ 0
gp = 6

(
1
Thk
)
(1 − 1α)Nu

(pd)2 (A56)

• Nusselt number correlation

Nu =
[
7 − 10

(1α
)+ 5

(1α
)2][

1 + 0.7
(
Rep
)0.2

(Pr)0.33
]

+
[

1.33 − 2.4
(1α
)

+ 1.2
(1α
)2

]
(
Rep
)0.7

(Pr)0.33

(A57)

• Equation of state and sound speed of gas

P = ρRT (A58)

a =
√

cp

cv

RT (A59)

N = cv

cp
(A60)

• Equation of state and sound speed of granular material

P = αρθ [1 + 2
(pα
)
g0(1 + e)] (A61)

a =
√

θχ

(
1 + 2

3
χ + (pα)

χ

∂χ

∂(pα)

)
, (A62)

• where

χ = 1 + 2(1 + e)
(pα
)
g0 (A63)

N (pα, e) =
pα[1 + 2(pα)g0(1 + e)]

χ [1 + 2/3χ + ((pα) χ) (∂χ/∂ pα)]
(A64)
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