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ABSTRACT

Major- and trace-element and isotopic analyses of single crystals can reveal temporal changes in 
the thermodynamic and mechanical behavior of magmatic systems. Additionally, zoning can be used to 
define crystal populations that have shared a common environment based on the correlation of zoning 
profiles among groups of crystals. However, as is evident in petrographic thin sections, comparison of 
zoning patterns is complicated by the geometric distortions resulting from crystal sections that are off-
center. Because of these distortions, identification of crystal populations becomes increasingly difficult 
with increasing degrees of geometric non-ideality. In addition, because of the inherent complexity of 
zoning profiles, often there is ambiguity in determining what level of correlation is significant, even 
for ideal cases. Consequently, significance levels must be determined for each correlation technique 
and set of natural profiles. We evaluate the effectiveness of standard correlation, wavelet-based cor-
relation (WBC), and profile-normalization techniques designed to counter the effects of non-ideality 
using Monte Carlo experiments correlating synthetic profiles. Results from the experiments show that 
adaptive profile normalization provides more significant correlations from fewer profiles than other 
techniques indicating that it is at least partially effective in counteracting the effects of non-ideality. 

INTRODUCTION

The use of crystals as recorders of changing magmatic envi-
ronments has proven a powerful way to recognize open-system 
and in situ crystal growth and transport (Davidson et al. 2001; 
Druitt and Bacon 1989; Singer et al. 1995). This approach has 
been used to demonstrate that individual crystals can record 
transit through diverse isotopic or compositional environments. 
Integrating of individual crystal data with whole-rock analyses 
is difficult because whole-rock analyses can represent an integra-
tion of multiple events, crystal populations, and variable degrees 
of assimilation (Tepley III et al. 1999, 2000; Vazquez and Reid 
2002; Waight et al. 2001; Wolff and Ramos 2002). Assigning 
significance to the various scales at which magmatic processes 
are represented requires bridging the gap between single-crystal 
data, whole-rock analyses, and conceptual models of system 
behavior. 

One way in which populations of crystals have been used 
to interpret magmatic systems is with crystal size distributions 
(CSD), which can provide constraints on nucleation and growth 
rates. However, interpretation can become complicated when 
CSDs deviate from log-linear relationships (Marsh 1998). Curved 
CSDs result from either complicated growth and nucleation re-
lationships, or mingling of populations where crystals may have 
grown under different conditions, similar to the issues between 
whole-rock and single-crystal data with deviations from pure 
fractionation. If crystal populations determined by comparison 
of zoning patterns can be determined independently from the 
CSD, the extent of mingling can be constrained and separate 

growth histories determined by CSD modeling (Higgins 1996). 
Another way in which crystal populations can be studied is the 
correlation of high-resolution compositional zoning profiles. 
Based on the assumption that crystals with equivalent zoning 
profiles record the same environment, it has been proposed that 
grouping crystals into populations on the basis of profile similar-
ity can reveal a progression of shared environments (Wallace and 
Bergantz 2002). In this method, one-dimensional zoning patterns  
in profiles from crystal sections are compared using a statistical 
measure of correlation. Groups of mutually correlating crystals 
are then labeled as a population in that they have shared some 
common magmatic environment.

Pearce (1984) recognized that zoning profiles measured from 
off-center sections are distorted and developed a quantitative 
method of estimating the probability of obtaining ideal sections. 
An ideal section is a cut, or plane, though a crystal that passes 
through the core of the crystal and is perpendicular to a crystal-
lographic axis (Fig. 1). Zoning profiles measured from sections 
with different orientations and positions in the same crystal 
can appear qualitatively different even though they record an 
overlapping interval of the zoning pattern. Consequently, the 
correlation of profiles without considering the effects of section 
orientation can lead to both false correlations and missing true 
correlations. Thus, the combination of non-ideality and the inher-
ent complexity of zoning profiles preclude a priori assessment of 
statistical significance of a correlation. Therefore, normalization 
techniques to account for the effects of non-ideal profiles and 
a statistical framework in which the significance of correlation 
coefficients can be evaluated are needed to reliably interpret 
correlation data.

We developed a statistical framework by performing Monte 
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Carlo experiments based on the correlation of synthetic zoning 
profiles. Comparison of Monte Carlo results using different cor-
relation and normalization techniques is used to refine guidelines 
for crystal selection, analysis, and the minimum number of pro-
files needed to resolve zoning populations. Although we focus 
on plagioclase, the approach presented here is applicable to any 
compositionally zoned mineral phase in igneous, sedimentary, 
or metamorphic rocks.

CORRELATION

The correlation coefficient is a measure of the similarity 
of zoning profiles. Correlation of zoning profiles compares 
co-located points in each profile to the mean and variance. 
Two methods used in correlation are standard correlation and 
wavelet-based correlation (WBC) (Wallace and Bergantz 2002). 
WBC uses a digital filter to select specific zoning scales, and is 
suited to assess the similarity of specific zoning types– such as 

oscillatory zoning or baseline compositional trends. Standard 
correlation calculates a correlation coefficient from the entire 
zoning pattern and is suited to general assessment of profile 
similarity. Standard correlation, r, is calculated as:

r x y
x y

=
cov( , )

var( ) var( )                    (1)

and covariance is:
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variance is:
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where N is the number of points in profiles x and y, and x-bar 
is the mean of profile x. In Equation 1, covariance values are 
normalized against variance to unit values. Covariance evaluates 
similarity among points by comparing their relative deviations 
from the mean, or expected value, of each profile. If zoning 
profiles have multiple types of features with different amounts 
of variance, each type of feature will have a weighting in the 
correlation coefficient proportional to its variance. For example, 
normal zoning trends have more variance than oscillatory zoning 
in plagioclase and will consequently have a stronger influence 
on the correlation coefficient. 

Wavelet-based correlation (WBC) restricts correlation of zon-
ing profiles to features of selected wavelengths (Fig. 2). Features 
are selected by filtering out larger and smaller scales of zoning 
than the features of interest using the wavelet transform (Kumar 
and Foufoula-Georgiou 1997; Torrence and Compo 1998). The 
wavelet transform converts a one-dimensional zoning profile into 
a two-dimensional matrix of locations and scales of features, and 
has the functional form (Fig. 2): 
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where f(x) is the profile, ϕ is the wavelet function, s is the scale 
of the wavelet function, and τ is the translation of the wavelet 
function relative to the profile. The wavelet function is chosen 
to be similar in shape to features in the zoning profile, and can 
be stretched to different scales to tune sensitivity to different 
widths of features in the zoning profile. The wavelet function is 
similar to the sine function in Fourier analysis. Likewise, scale 
is analogous to wavelength. The derivative of Gaussian (DOG) 
wavelet is used for analysis of plagioclase zoning profiles (Wal-
lace and Bergantz 2002):
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WBC uses the wavelet coefficient matrix to filter out unwant-
ed components of the zoning profile. By excluding coefficients 
corresponding to features of greater or smaller scale than those 
of interest, the wavelet coefficient matrix acts as a band-pass 
filter leaving only features with the desired wavelength for cor-
relation. Equation 1 is then applied to the remaining coefficients 
to calculate a correlation coefficient weighted by only features 
within the scale range of interest. 
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FIGURE 1. Two-dimensional schematic of a plagioclase crystal with 
ideal and non-ideal sections indicated by dashed lines. This grain has an 
aspect ratio of 2.8:1. Dots on sections represent the core or apparent core 
of the section. All sections can be generalized to three dimensions with 
the addition of an extra degree of freedom. (a) Ideal section that passes 
through the core of the grain, and the grain is perpendicular to the section. 
(b) Poorly oriented section that passes though core, but is misoriented. 
(c) Poorly oriented, off-center section: section misses the earliest 30% of 
growth (by distance). Stretching for the right side of profile is the same as 
for b. (d) Ideally aligned, off-center section. Section misses the earliest 
60% of growth (by distance). No stretching. The effects of non-ideality 
can be parameterized as a combination of stretching and truncation. 
Truncation of the near-core part of the zoning profile occurs in profiles 
measured from sections that are off-center. Truncation is an irreversible 
loss of information that can affect the variance of the profiles and thus 
either increase or decrease correlation levels. Stretching of profiles causes 
zone peaks to misalign reducing overall correlation. These effects must 
be considered prior to correlation. 
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With standard correlation or WBC, correlation coefficients 
only can be calculated from profile segments with the same num-
ber of points. Profiles may have different numbers of points if 
they are from crystals of different sizes, measured at different 
resolutions, or measured at different orientations within a crystal. 
In addition to changing the amount of each profile that can be 
compared, stretching that results from misoriented profiles can 
change the correlation coefficient by altering the positions of 
zoning features.

PROBABILITY AND GEOMETRIC EFFECTS OF NON-
IDEAL SECTIONS 

Two-dimensional examples provide a basis for understanding 
distortion effects and help to develop guidelines for measurement 
of zoning profiles from sections (Fig. 1). There are two types 
of distortion that can result from the measurement of zoning 
profiles from non-ideal sections: truncation of the near-core part 
of the zoning profile and stretching. The amount of truncation is 
proportional to the distance of the section from the core of the 
crystal. The amount of stretching is related to the angle between 
the zoning profile and growth faces. For example, in Figure 1, 

section a is ideal, whereas section d is aligned but off-center. 
Because section d is subparallel to the zoning pattern near the 
core, there will be a region of homogeneous composition in the 
inner third of profiles measured from the section. As oriented 
sections are cut further from the core of the crystal, the subparallel 
region widens and profiles develop a widening area of homo-
geneous composition. Section c is both off-center and aligned 
improperly, but not parallel to the zoning pattern, so there is no 
homogeneous region near the core. However, there is asymmetry 
in zone widths on either side of the apparent core because the 
section cuts across different crystal faces. As off-center sections 
rotate to increasing degrees of misorientation, the subparallel part 
of the profile develops asymmetry, and the apparent core shifts to 
the edge. If zone orientation changes in the middle of a profile, 
there is an accompanying change in the amount of stretching 
that is difficult to account for. It is better to keep the amount of 
stretching constant over the entire profile length.

Distortion can be minimized by using criteria that require 
profiles to have constant crystallographic orientation from the 
core to rim. Profiles measured from sections with asymmetry or 
obviously subparallel regions marked by homogeneous composi-
tion at the core, should be measured along the shortest core-to-rim 
distance. Sections with symmetry should be measured so that 
the number of points in the profile is similar to other measured 
profiles. Alternately, only profiles from on-center sections can 
be measured. However, the criteria for identifying ideal sec-
tions may introduce selective bias and exclude some crystal 
populations. 

If crystals are distributed randomly within a rock volume, 
non-ideal sections will outnumber ideal sections in most petro-
graphic thin sections. Pearce (1984) showed that the probability 
of obtaining a section within a distance d from the core of a 
crystal of core to rim width D is (Fig. 3):

P(d) = d/D                    (6)

Considering that the probability of obtaining a section within 
λ-degrees of the ideal orientation is sin(λ), as few as one crys-
tal per thin section will be ideal (Pearce 1984, 2000, personal 
communication). However, because volume increases as D3, 
precisely on-center grains are not critical to reveal the majority 
of the growth history by volume (Pearce 1984). For spherical, 
orthorhombic, and tetragonal crystals, the probability of sampling 
a given volume fraction f is (Fig. 3):

P f f( ) = −13
 (7)

This result means that half of the crystals in a thin section will 
expose 87.5% of their growth history by volume. Equation 7 is 
only approximate for crystals that have not grown with constant 
aspect ratio. If the volume crystallized is considered a more 
appropriate index of growth history than the linear core-to-rim 
distance, then sampling criteria can be relaxed, allowing more 
sections to be used from a given thin section. 

Regardless of the amount of the growth history recorded in a 
zoning profile, some degree of distortion is likely to be present 
even in sections that are nearly ideal. If non-ideal profiles are to 
be correlated successfully, some form of stretching and aligning 
should be considered to compensate for the distortion. 

FIGURE 2. Wavelet analysis of a sample signal. Convolution of the 
wavelet function (a) with the data series (b) produces a wavelet coefficient 
matrix (c). The wavelet coefficient matrix can be used as a band-pass filter 
by extracting a scale range corresponding to the wavelength of the feature 
of interest. There is a 3:1 proportionality between wavelength and scale 
for the derivative of Gaussian (DOG) wavelet. For example, to extract 
the portion of the signal with wavelengths between 90 and 120 points, 
the wavelet coefficient matrix is windowed to include scales between 
30 and 40. (Modified from Wallace and Bergantz 2002).
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PROFILE NORMALIZATION

Profile normalization alters the length and alignment of pro-
files to compensate for the effects of non-ideal sections. There 
are three options for normalization: no-normalization, common 
length normalization, and adaptive normalization (Table 1). 
Although it is not possible to correct for truncation without 
knowing the zoning pattern of the core of the grain, differences 
in orientation resulting in stretching can be compensated for 
by changing the length of profiles. The simplest assumption is 
that profiles have not been stretched and that profiles can be left 
at their measured lengths for correlation. If it is assumed that 
there has been stretching but no truncation, then profiles can be 
normalized to a common length. However, if both truncation and 
stretching have affected profiles, then an adaptive approach that 
uses variations in profile characteristics to guide stretching and 
alignment of profiles is needed. 

Two adaptive approaches appropriate to normalization of 
zoning profiles are Fourier-based normalization and correla-
tion optimization. Fourier-based adaptive normalization is 
based on the assumption that features in zoning profiles have 
characteristic wavelengths or frequencies. If this assumption is 
true and profiles are at the same degree of stretching, Fourier 
analysis will reveal the same frequency spectra for each profile. 
For example, if two sine waves with different wavelengths are 
analyzed, the difference in their dominant frequencies will be 
proportional to their difference in wavelength. The sine waves 
can be normalized by stretching one of the profiles until their 
spectra match (Atlas 2002, personal communication). Because 
frequency analysis only compensates for stretching and has no 
spatial reference, a known point, such as the crystal rim, must 
be used to align the profiles. 

If profiles do not have characteristic frequencies, the utility 
of Fourier-based normalization techniques is difficult to assess. 

Natural zoning profiles have complex spectral characteristics, 
such as poorly defined peaks and low signal-to-noise ratios, and, 
when zoning patterns are self-similar, have variable zone widths 
or few large compositional spikes. When profiles have complex 
spectral characteristics, many of the issues encountered in the 
alignment of zoning profiles are encountered when aligning fre-
quency spectra. Some studies of oscillatory zoning in plagioclase 
have documented dominant frequencies (Ginibre et al. 2002), 
but analysis of entire zoning patterns usually result in complex 
spectra due to the superposition of zoning types and gradational 
changes in shape and amplitude between zoning features. 

Another approach to adaptive normalization is to align pro-
files on a pair-by-pair basis to optimize their correlations. First, 
one profile is designated as the reference and the other as the 
variable profile. The variable profile is replicated and interpolated 
to a range of lengths resulting in an array of stretching. Then, 
each copy of the variable profile is translated past the reference 
profile and a correlation coefficient calculated at each position. 
The combined stretching and translation with the highest cor-
relation coefficient is selected as the optimal normalization for 
that pair of profiles. The addition of translation in the normal-
ization routine provides partial compensation for inconsistent 
rim selection in plutonic or glomerocrystic crystals where it is 
difficult to consistently determine rim positions. No translation 
is needed if rim positions are the same for all profiles. Because 
baseline trends dominate variance, this adaptive normalization 
technique aligns primarily on the similarity of baseline trends 
and secondarily on the distribution of smaller scale zoning 
features. Adaptive normalization by correlation optimization is 
more reliable for the alignment of plagioclase zoning profiles 
than Fourier-based techniques and is the technique used in the 
Monte Carlo experiments below. 

Once profiles have been normalized using one of the tech-
niques above, they can be correlated by either standard cor-
relation or WBC. Correlation of the same set of profiles will 
produce different coefficients for each of the normalization and 
correlation approaches. If different techniques produce differ-
ent results, then each technique is also likely to have different 
significance levels. The question now is: “What is a significant 
correlation?”

TABLE 1.  Normalization techniques for profiles measured from non-
ideal sections

Technique Approach Assumptions

No-normalization Leave profiles at  Profiles are on-center,
 their measured length measured along the same  
  crystallographic axes, at the  
  same resolution
Common-length  Interpolate profiles All sections are on-center,
normalization to a common length crystals have a common  
  nucleation time and
  differences in length are due
   to section misorientation  
  and/or measurement   
  resolution
Adaptive  Parametric All profiles have
normalization alignment and  a common feature, 
 stretching such as wavelength of 
  zoning or baseline trend,
  that can be used to 
    match profiles
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FIGURE 3. Probability of cutting a section through a grain with a 
given fraction of the length or volume of the crystallization history 
represented in the zoning pattern. The dashed line shows the difference 
in probability between representing 50% of the history by volume or 
by core-to-rim distance. The relationship between length fraction, l, 
and volume fraction, f, for spherical and tetragonal crystals is l = –(1 
– f)1/3 + 1. 
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REFERENCE DISTRIBUTIONS AND STATISTICAL       
SIGNIFICANCE

There is no generic formula for the determination of signifi-
cance levels for profile correlation due to stretching, truncation, 
and the variability of crystal sizes, zoning types, and patterns 
– all of which affect correlation. Statistical significance is deter-
mined by comparing measurements to a reference distribution, 
which provides a measure of the probability that a measurement 
is distinguishable from random association (Box et al. 1978). 
For example, if a value is greater than 95% of a distribution, it 
is considered significant at the 95% level (Fig. 4). Changes in 
the reference distribution will change significance levels and 
affect the identification and interpretation of populations from 
correlation coefficients. Therefore, a reference distribution 
must be determined independently for each set of profiles to 
correctly evaluate correlation coefficients. For the correlation 
of zoning profiles, the reference distribution must represent the 
probability of a pair of random zoning profiles correlating at a 
given value.

Reference distributions must be determined for each type 
of normalization and correlation technique. Each approach to 
profile correlation will have a different amount of inherited 
correlation from the assumptions used to align profiles and the 
differences in profile variance due to digital filtering. Because 
of the complexity of zoning profiles, it is difficult to determine 
significance levels from a theoretical basis. However, a Monte 
Carlo approach in which many profiles with defined character-
istics are correlated provides a way to determine significance 
levels. If profiles with random characteristics are correlated, the 
distribution of the correlation coefficients provides a proxy for the 

reference distribution of false matches from which significance 
levels can be determined. The correlation value that 5% of false 
correlations are above is the 95th percentile significance level 
for profiles with the defined characteristics. 

MONTE CARLO STATISTICAL MODEL

Monte Carlo experiments provide an adaptable method for 
determining reference distributions. This approach parameterizes 
the effects of non-ideal sections and the diagnostic features of 
zoning in sets of synthetic zoning profiles (Fig. 5). Histograms 
of the correlation of synthetic profiles with random character-
istics are used as reference distributions. Two sets of profiles 
were generated for this study: the first set of profiles consists of 
random profiles that are used to develop reference distributions, 
and the second set of profiles contains initially identical profiles. 
Correlation of a population of initially identical profiles provides 
a method of evaluating the effectiveness of different analytical 
approaches as the ideal correlations are known a priori. As the 
number of synthetic zoning profiles in each set increases, the 
histogram of their correlations will converge on an appropriate 
reference distribution. Each Monte Carlo experiment consists of 
40 sets of 30 profiles, excluding correlations of a crystal against 
itself, giving 34 800 correlations (Figs. 6 and 7). 

SYNTHETIC ZONING PROFILES

Because reference distributions are generated by the cor-
relation of synthetic zoning profiles, the synthetic profiles must 
mimic the diagnostic zoning features found in natural zoning 
profiles. If inappropriate synthetic profiles are used, reference 
distributions will provide incorrect significance levels. The 
diagnostic features of plagioclase zoning profiles are distinc-
tive shapes and amplitudes of changes in the anorthite content. 
Plagioclase zoning is divided into three categories: type I zoning, 
type II zoning, and a baseline trend (Pearce and Kolisnik 1990). 
Type I, or oscillatory, zoning is characterized by zones from <1 
to 10 μm in width and 1 to 10% An, with most zones less than 
5% An. Type II zoning is characterized by variations greater than 
5% An, and widths of 3 to 100 μm. Type II zones are commonly 
preceded by a resorption event followed by crystallization at 
higher An content resulting in a sawtooth shape (Pearce 1994). 
Baseline chemical trends span the full length of the zoning profile 
and range from flat to tens of percent change in An. 

Synthetic profiles are constructed by simulating each zoning 
types and then superposing them on a baseline trend (Fig. 7). 
Each type of zoning feature is tailored to match natural zoning 
profiles, but the position and amplitude of zoning features is 
assigned randomly to prevent biasing correlation coefficients. 
Type I zoning is simulated by white noise with variable am-
plitude to match specific data sets. For the analyses presented 
here, amplitude is set to the range –1 to 1. Type II zoning is 
simulated by convolution of a sawtooth-shaped filter with a 
series of randomly placed spikes. Spike heights are distributed 
normally, creating a range of peak amplitudes. The filter shape 
can be changed to match the characteristic shape of type II zones. 
Synthetic profiles in this study have been superposed on a normal 
zoning trend in the range An50 to An25. Baseline trends can be 
determined from data sets using a low-order polynomial fit to 
the natural profiles. 

Figure 4.
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FIGURE 4. Graphical representations of two random data sets in the 
range ward1 to 1. (a) Histogram of all data points. Black histogram is 
normally distributed. Gray histogram is not normally distributed. (b) 
Percentile distributions with 90th and 95th significance levels marked 
by index lines. Colors as above. For the normal distribution, values 
greater than 0.3 are significant above the 95% level. However, for the 
gray population, values greater than 0.86 are significant above the 95% 
level. 
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Even with strict sampling criteria, natural zoning profiles 
are likely to have some degree of distortion because of the low 
probability of obtaining an ideal section. Consequently, synthetic 
profiles need to be modified to approximate varying degrees of 
non-ideality—they need to be stretched and truncated. A sim-
plifying assumption is that sections are chosen to be within a 
given fractional distance from the core of the crystal and section 
orientation is not a sampling criterion. Truncation is treated as a 
simple removal of the near-core portion of the synthetic zoning 
profile. To simulate different sampling criteria, the amount of 
truncation from the near core part of the zoning profile is varied to 
different thresholds between 0 and 0.7 of the total profile length. 
For a truncation threshold of 0.6, the amount of truncation from 
the near-core part of the zoning profile is assigned randomly 

to be between zero and 60% of the profile length. Profiles are 
stretched by a random amount between 0.5 and 1.5 of the profile 
length to simulate the effects of misorientation; this approximates 
a tetragonal crystal with an aspect ratio of 2.8:1. This model for 
the distortion of synthetic profiles assumes that stretching of 
zoning patterns is evenly distributed along the profile. However, 
if zones in natural crystals are curved, the amount of stretching 
is no longer evenly distributed along the profile and is a function 
of the changing angle between the measured profile and growth 
faces. An appropriate stretching routine for curved zones in a 
spherical crystal is presented in Appendix I. 

PROFILE SAMPLING REQUIREMENTS

Given that there may be multiple populations in a measured 
set of zoning profiles and that not all correlations within a popula-
tion will be significant, there is a minimum population size that 
can be resolved from a limited number of profiles. The minimum 
fractional size of a population, xmin, in the total population that 
can be resolved with a given number of samples is a function of 
the total number of profiles, G, the smallest number of profiles 
in a population, G*, and the fraction of correlations of a single 
population above the significance level, Q. Assuming that there 
is no selective bias during sampling, the probability of any indi-
vidual crystal representing a given population is P = xmin. Note 
that if xmin is sampled significantly, and Q and G* are constant for 
all populations, populations larger than xmin will be oversampled. 
Using this limiting case as a guide, the number of grains that 
must be sampled to resolve xmin is approximated as:

G G
x Q

=
*

min
(8)

If Q is variable between populations, it may be necessary 
to calculate G for each sample according to the limiting case. 
Populations are not necessarily evenly distributed due to either 
inequalities in abundance or crystal size, which can introduce 
a systematic sampling bias in which populations made of large 
crystals are over represented (Russ and Dehoff 2000). For ex-
ample, if populations are distributed evenly, xmin is 0.5, whereas 
for a 5:1 ratio in abundance between two populations, xmin is 
0.2. Therefore, many profiles must be measured to resolve un-
evenly distributed populations than to resolve evenly distributed 
populations. For the Monte Carlo experiments in which a single 
population is analyzed, xmin is 1.0. Equation 8 also can be used 
to estimate the smallest population that can be resolved from a 
set of profiles.

RESULTS OF MONTE CARLO EXPERIMENTS

Monte Carlo experimental results for significance levels and 
single population correlations are presented in Figures 5 and 
6. The 95th percentile significance levels vary between 0.35 
and 0.98. Standard correlation reference distributions produce 
consistently higher significance levels than WBC. WBC signifi-
cance levels are more variable and, except for common length 
normalization, increase with increasing truncation threshold. This 
increase in variability indicates a stronger dependence on non-
ideality than other techniques that generally show little sensitivity 
to changes in truncation threshold. As the truncation threshold 
increases, there are fewer zones present in each profile, and the 

FIGURE 5. Significance levels for standard correlation and wavelet-
based correlation (WBC) using normalization techniques outlined in 
text. Significance legend is at bottom of figure. Standard correlation 
techniques have the highest correlation levels for a given distortion index 
and percentile. Adaptive normalization gives the highest correlations 
with the WBC technique for a given distortion index and percentile; 
common length normalization gives the lowest. Increasing correlation 
with distortion index in WBC indicates decreasing reliability of the 
normalization routine with decreasing ideality of the section. Dashed 
lines are references at the 95th percentile for truncations of 0.1 and 0.4 
for Figure 6. 
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probability of a majority of those zones aligning increases. The 
resulting increase in weighting of individual zones on the cor-
relation coefficient causes an increase in the significance level 
for WBC. Even though the same effects hold true for standard 
correlation, increases in correlation are buffered by increases in 
variance as the steeper part of the baseline trend becomes more 
dominant. Constant significance levels with increasing degrees 

FIGURE 6. Correlations of a single population that has been stretched and truncated. Adaptive normalization produces the best results in WBC 
analyses. Dashed lines are the 95th percentile significance level for truncations of 0.1 (gray) and 0.4 (black), as in Figure 5. The percentile axis 
represents the percentage of the data that fall below the significance level for a corresponding significant correlation level from the x-axis. The 
fraction of significant correlations, Q, is the percentage the population with significant correlations (e.g., 40% for WBC with adaptive normalization 
at T = 0.4). The larger the fraction of significant correlations, the more effective the technique. Significance levels are from Monte Carlo results 
presented in Figure 5.
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of non-ideality indicate that sampling criteria will not strongly 
affect correlation significance in this data set. Trial Monte Carlo 
experiments with various synthetic profile configurations result in 
different reference distributions and significance levels, indicat-
ing that results of this study are only valid for profiles similar to 
the synthetic profile in Figure 7.

The fraction of significant correlations provides a bench-
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mark for evaluating the effectiveness of different correlation 
and normalization techniques: the larger the significant fraction, 
the more effective the technique (Fig. 6). Adaptive normalization 
is consistently the most effective with a Q of 0.4, whereas com-
mon length normalization produces Q as low as 0.16. Common 
length and adaptive normalization Q values converge at low 
truncation thresholds. This convergence reflects an approach 
to ideal conditions for common length normalization (Table 1). 
Interestingly, despite the range of significance levels for adap-
tive normalization and no normalization, the techniques produce 

fairly constant Q over a range of truncation thresholds indicating 
that the effectiveness of each is more dependent on the underly-
ing assumptions than the degree of truncation.

The number of profiles required to resolve populations is 
more dependent on normalization technique, than on correlation 
technique (Table 2). The number of profiles needed to resolve a 
single population ranges from 9 to 30 for adaptive normalization 
and common length normalization. Assuming identical Q for 
all populations, between 82 and 300 profiles may be needed to 
resolve a population represented by 10% of profiles.
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FIGURE 7. Construction of a synthetic plagioclase zoning profile, as discussed in text. Synthetic profiles are generated by the progressive addition 
of key zoning components. Type II zoning is simulated by the convolution of a sawtooth-shaped filter with a set of spikes with random height and 
distribution. The baseline trend is added as a smooth normal zoning trend. Different curves may be substituted to simulate reverse zoning, or other 
zoning trends. Type I zoning is simulated as white noise. Non-ideal geometries are simulated by truncation and stretching of the profile for off-center 
and misorientation. It is implicitly assumed that zones are parallel in the stretching routine used here. If zones are curved, a different routine must 
be used, such as the one presented in Appendix I for a hypothetical spherical crystal.
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DISCUSSION

We have presented a Monte Carlo approach to determine 
statistical significance levels for the correlation of compositional 
zoning profiles and the effects of varying degrees of profile distor-
tion and sampling criteria. The use of synthetic zoning profiles 
to build reference distributions allows significance levels to be 
determined for natural zoning profiles and different sampling 
criteria. However, because reference synthetic profiles are tai-
lored to natural profiles, significance levels are valid only for 
profiles with similar characteristics. Sampling criteria should be 
based on a qualitative assessment of the distribution of popula-
tions based on petrographic inspections and a pilot set of Monte 
Carlo experiments to determine significance levels and sampling 
requirements. Monte Carlo experiments implicitly assume that 
there is no selective bias during measurement of zoning profiles. 
However, if populations are identified on a qualitative basis, 
smaller populations can be preferentially selected to reduce the 
total sampling requirements. If the amount of truncation can be 
estimated during sampling, significance levels can be assigned on 
a pair-by-pair basis from the appropriate reference distribution. 
Although minimum sampling requirements are appropriate only 
to their specific data set, they do indicate that large data sets are 
needed to resolve zoning populations. As more complex data 
sets are used for correlation, the number of profiles needed to 
resolve populations will increase, particularly for profiles with 
differences between baseline trends. 

Rapid, high-resolution analytical techniques for measuring 
zoning profiles are needed to measure large numbers of pro-
files. Even though they may be faster to measure, low-resolu-
tion zoning profiles offer fewer points for correlation and are 
less amenable to wavelet analysis. Most optical methods like 
Nomarski differential interference contrast or a-normal profile 
comparison either offers no compositional information or lack 
adequate spatial resolution (Anderson 1983; Ginibre et al. 2002; 
Hibbard 1995). Microprobe point traverses are a common method 
of zoning profile measurement that offers excellent composi-
tional resolution and a spatial resolution to 3–5 μm. However, 
many analysis points are required to characterize each profile, 
which can be time consuming. Laser interferometry coupled 

with an appropriate digitizing routine also has potential, but re-
quires calibration by microprobe analysis (Pearce et al. 1987). 
Calibrated back-scattered electron (CBSE) imaging of zoning 
profiles offer spatial resolution to ~1 μm, and compositional 
resolution of 1–2% An when calibrated with microprobe analyses 
(Ginibre et al. 2002; Wallace and Bergantz 2002). CBSE imag-
ing is perhaps the best available technique at present, because 
high-quality BSE images can be collected quickly, and require 
only a few calibration points.

Finding ways to reduce sampling requirements will increase 
the efficiency of techniques such as WBC. The most direct way 
to reduce sampling requirements is to increase the fraction of 
significant correlations for any population. The relatively simple 
adaptive normalization routine used in these Monte Carlo ex-
periments improves efficiency by a minimum of 30% over other 
normalization techniques. If this is an indicator of the potential 
of adaptive normalization, further improvements in adaptive 
normalization techniques are also likely to increase efficiency. 
Adaptive normalization may be improved by including a wavelet 
basis similar to Fourier-based normalization, or by integrating 
multiple normalization techniques through neural networks to 
evaluate the best profile alignment. 

CONCLUDING REMARKS

A precondition for the identification of crystal populations 
is the generation of an appropriate set of reference profiles for 
each set of natural profiles to distinguish significant correlations. 
Monte Carlo experiments are useful not only as a way to estab-
lish significance levels from reference populations, but also as 
a tool for establishing sampling guidelines when homogeneous 
populations are analyzed. Improvements in adaptive normaliza-
tion and digital filtering have the potential to reduce sampling 
requirements. The large data sets that Monte Carlo experiments 
indicate are required to unravel zoning populations is daunt-
ing at first. However, recent advances in profile measurement 
coupled with the quantitative kinematic and chemical constraints 
that come from the correlation of crystals that are analyzed as 
both physical and chemical objects offer strong motivation for 
further work. 
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APPENDIX I: NON-IDEAL SECTIONS IN A SPHERICAL 
GRAIN

A function that relates positions in oriented and misoriented 
profiles is needed to implement adaptive normalization routines 
and accurately distort synthetic profiles. For crystals with planar 
growth faces, the amount of stretching is distributed evenly in 

the profile because the angle between zones and profiles are 
constant from core to rim (Fig. A1a). However, for substances 
with curved growth faces the amount of stretching in an off-
center section increases as the angle between the profile and the 
growth face decreases. 

For crystals where growth faces can be considered parallel 
(Fig. A1a), an arbitrary position in an oriented profile, s, can be 
mapped to a position, s', in a misoriented profile ϕ degrees from 
the ideal by:

s' = s sec ϕ  (A1) 
For a hypothetical spherical crystal, the amount of stretch-

ing in an off-center profile increases toward the apparent core 
as the profile becomes tangential to growth faces and zoning 
(Fig. A1b). In a spherical crystal, the amount of stretching at an 
arbitrary point in an off-center profile is a function of position 
in the profile and amount of truncation. Note that in a spherical 
crystal, the distance from the core controls both truncation and the 
distribution of stretching, so misorientation does not need to be 
considered independently. Points in ideal and off-center sections 
are connected by an arc between x and x' respectively. Using the 
properties of right triangles, the position in the ideal profile x can 
be mapped to the position in the off center section x' as:

x' =x x T©= −2 2  (A2)   
where T is the amount of truncation. 

FIGURE A1. Relationship of points in non-ideal zoning profiles to 
ideal profiles for crystals with parallel and curved growth faces. (a) Where 
growth faces are planar, zones are parallel, and stretching is distributed 
evenly in misoriented profiles. (b) Where growth faces are curved, 
stretching is not distributed evenly and becomes more pronounced as 
profiles become tangential to zones. 


