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ABSTRACT

Elemental chemistry, radiogenic isotopic data, and zircon U-Pb inheritance pat-
terns for the Famatinian-Puna arc suggest that the primary petrogenetic process 
operating in the arc was mixing between subarc mantle-derived gabbroic magmas 
and metasedimentary materials without a substantial component of lower-crustal 
continental basement rocks. This mixing is observable in the fi eld and evident in vari-
ations of chemical elemental parameters and isotopic ratios, revealing that hybrid-
ization coupled with fractionation of magmas took place in the upper 25 km of the 
crust. Intermediate and silicic plutonic rocks of the Famatinia-Puna arc formed in a 
subduction setting where the thermal and material input of mantle-derived magmas 
promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic 
and dioritic magmas with crustal granitic melts. Whole-rock geochemical and iso-
topic data for the Famatinian-Puna magmatic belt as a whole demonstrate that the 
petrologic model studied in detail in the Sierra Valle Fértil–La Huerta section has 
the potential to explain generation of plutonic and volcanic rocks across the Early 
Ordovician western Gondwanan proto-Pacifi c margin. This example further under-
scores the signifi cance of passive-margin sedimentary accumulations in generating 
continental arcs.
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INTRODUCTION

Interest in subduction-related magmatic belts centers on their 
importance to the study of: (1) the generation of continental-scale 
intermediate magmatism, (2) the causal mechanism of volcanic 
hazards and major earthquakes, (3) the nature of hydrothermal 
ore systems, and (4) the evolution and growth of the continental 
crust (Gill, 1981; Tatsumi and Eggins, 1995; Ducea and Barton, 
2007). Ancient magmatic belts from destructive plate margins are 
dominated by Cordilleran-style intermediate and silicic plutonic 
rocks. The extent to which the dominant intermediate and silicic 
plutonic rocks from destructive plate margins refl ect either addi-
tion of new material to the crust, recycling of preexisting crust, or 
a mixture between the two has been strongly debated (for a recent 
discussion, see Brown, 2013). The issue is central for decipher-
ing the chemical evolution and net growth rate of the continental 
crust (Davidson and Arculus, 2006; Kemp et al., 2009; Cawood 
et al., 2012).

This study reviews isotopic data from one of Earth’s largest 
magmatic arcs, the Ordovician Famatinian-Puna arc from NW 
Argentina and Bolivia. Our initial focus was the deepest known 
crustal section of the arc, which makes up the Sierra Valle  Fértil–
La Huerta, one of the Sierras Pampeanas (Fig. 1). The petro-
genesis of Early Ordovician plutonism from Valle Fértil and La 
Huerta was deciphered through the combined study of petrogra-
phy, whole-rock geochemistry, and radiogenic isotopes and U-Pb 
zircon geochronology (Otamendi et al., 2009a, 2012; Ducea et 
al., 2010). Subsequently, we extended our focus to various expo-
sures of the Famatinian arc located to the north into the Puna Pla-
teau. Preliminary observations from there, as well as previously 
published data, are used to interpret the petrogenetic and tectonic 
evolution of the arc. The principal conclusions drawn here are 
that the arc was active and in fl are-up mode for a relatively short 
period of time, and it formed via a combination of subcraton (iso-
topically “enriched”) mantle-derived magmas and melts derived 
from a thick and melt-fertile suite of passive-margin sedimen-
tary rocks, regionally known as the Puncoviscana Formation and 
regionally correlative units. There is no evidence for the exis-
tence of a cratonal lower crust under the Famatinian arc.

GEOLOGICAL SETTING

Summary of the Geologic Evolution of the Late 
Neoproterozoic to Ordovician Western Gondwana Margin

The proto-Andean margin of western Gondwana has experi-
enced fairly continuous subduction with relatively short interrup-
tions during terrane accretions (Cawood, 2005) or periods when 
the margin was a transform fault since the latest  Proterozoic–early 
Paleozoic. The Pampean magmatic arc was built on the once- 
passive margin of a western Gondwanan landmass when subduc-
tion began at ca. 550 Ma (Rapela et al., 1998; Schwartz et al., 2008). 
Subduction-related magmatic activity paused between ca. 515 
and 495 Ma, stepped out to the west, and resumed on the western 

margin during the growth and evolution of the Famatinian mag-
matic arc (Pankhurst et al., 1998). The lack of  subduction-related 
arc magmatism during the Late Cambrian was speculatively inter-
preted to have been caused by either accretion of the Pampean 
terrane to the proto-Pacifi c Gondwanan margin (Rapela et al., 
1998) or a ridge-trench collision on the border of the Gondwa-
nan landmasses (Schwartz et al., 2008). Current understanding 
shows that the Pampean thermo-tectonic orogeny was short-lived 
(ca. 530–515 Ma) and affected thick  Neoproterozoic–Early Cam-
brian sedimentary sequences (Martino et al., 2009; Drobe et al., 
2009). These thick, mostly marine sedimentary sequences, which 
are regionally referred to as the Puncoviscana Formation, were 
deposited in basins onto and outboard of landmasses from west-
ern Gondwana (e.g., Ježek et al., 1985; Pearson et al., 2012). The 
Pampean arc now comprises a N-S–trending belt from southern 
Córdoba (~33°S) into southern Bolivia (~22°S; Aceñolaza, 2003; 
Drobe et al., 2009; see also Fig. 1).

The Famatinian arc started at ca. 495 Ma, presumably when 
subduction was reestablished along the outboard boundary of 
the Pampean arc and “orogeny,” leaving behind in its back arc 
the crystalline packages metamorphosed during the Early Cam-
brian (Fig. 1). The southern segment (28°S to 38°S, present-day 
coordinates) of the Famatinian arc was closed during the middle 
Ordovician (beginning at ca. 465 Ma), when a continental micro-
plate that had rifted from North American Laurentian landmasses 
collided against the proto-Pacifi c Gondwana margin (Thomas 
and Astini, 1996; Ramos et al., 1996).

The Famatinian arc is exposed for ~2000 km along the strike 
of the modern central Andes, and the transition from plutonic to 
volcanic Famatinian rocks can be followed over large regions in 
northwestern Argentina (Rapela et al., 1992; Toselli et al., 1996; 
Pankhurst et al., 1998; Coira et al., 1999). The deepest plutonic 
levels of the arc are currently exposed along a roughly N-S–
striking wide belt extending ~600 km between 28°S and 33°S 
(Fig. 1). Complementary Early Ordovician shallow-emplaced 
plutonic and eruptive igneous rocks interbedded with sedimen-
tary rocks (“Faja Eruptiva”) are found within the Puna- Altiplano 
region (Coira et al., 1999; Viramonte et al., 2007) and in the 
Sierra de Famatina (Mannheim and Miller, 1996), between 22°S 
and 28°S. The wall rocks of all the Famatinian plutonic rocks 
are supracrustal sedimentary packages consisting largely of 
siliciclastic sediments with subordinate interlayered carbon-
ate beds—the Puncoviscana Formation and its metamorphic 
equivalents (Caminos, 1979; Ježek et al., 1985; Pearson et al., 
2012). As shallower levels of the Famatinian paleo-arc crust are 
exposed northward along strike, the non- to weakly metamor-
phosed sedimentary stratigraphic units mapped in the Puna and 
northern Sierras Pampeanas, which are correlative to the meta-
morphosed strata that crop to the south (Aceñolaza et al., 2000), 
are uncovered. Late Neoproterozoic–Early Cambrian thick tur-
biditic packages and Late Cambrian shallow-marine sediments 
are the most likely protoliths to the metamorphic units hosting 
the Famatinian arc plutonic rocks (e.g., Aceñolaza, 2003; Collo 
et al., 2009), whereas epizonal plutons in Sierra de Famatina and 
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Figure 1. Map showing the distribution of pre-Carboniferous lithotectonic units in central-northwestern Argentina (modifi ed after 
Pankhurst and Rapela, 1998; Coira et al., 1999; Hongn et al., 2010).
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 neighboring areas intruded into Early Ordovician volcanosedi-
mentary cover sequences formed during the early magmatic arc 
stage of the Famatina (Toselli et al., 1996; Mángano and Buatois, 
1996; Astini, 1998; Astini and Dávila, 2004).

Geology of the Sierra Valle Fértil–La Huerta Section

Within the western belt of the currently exposed Famatinian 
magmatic arc, the Sierra Valle Fértil–La Huerta section contains 
well-exposed sections showing the transition between lower- to 
upper-crustal levels (Fig. 2; Mirré, 1976; Vujovich et al., 1996; 
Otamendi et al., 2009a). In particular, cumulate textures in the 
mafi c rocks are used as markers of paleohorizontal position (Ota-
mendi et al., 2009a). The shallower part of the exposed section 
corresponds to its eastern boundary, whereas deeper levels of the 
crust are exposed to the west; the section is tilted almost 90° from 

its original position. From west to east, the lithologic units dis-
play a progression from mafi c to intermediate toward more silicic 
igneous compositions. The overall geometry of the lower part of 
the section is one of numerous sills of various magmatic units 
that invaded a preexisting crust in which only highly migmatized 
residual metasedimentary rocks are found. The upper part of the 
exposed section contains stock-like plutons of granodiorites and 
rare granites that are similar to the large plutonic masses found 
elsewhere in Cordilleran batholiths (e.g., the Sierra Nevada in 
California). Only minor faults exist in this section; there is no 
evidence that this arc was accompanied by structural (e.g., thick-
ening) processes while it developed. The entire Sierra Valle Fér-
til section was almost entirely exposed prior to the deposition 
of Permian–Triassic basalts. The collisional or transcollisional 
docking of the Cuyania-Precordillera microplate is inferred to 
have caused the exhumation of the deep crust in the area.

Figure 2. Simplifi ed geologic map of the 
Sierras Valle Fertil–La Huerta taken af-
ter the geological maps of Mirré (1976) 
and Vujovich et al. (1996). Map shows 
the location of areas chosen in our pre-
vious studies and integrated here, these 
are: 1—Otamendi et al. (2009a), 2—
Ducea et al. (2010) and Otamendi et al. 
(2012), 3—Otamendi et al. (2009b).
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This deep-seated plutonic section of the Early Ordovician arc 
is almost entirely igneous, with minor framework of migmatitic 
metasedimentay rocks that were metamorphosed and partially 
melted during plutonism. There are no stratigraphic relationships, 
and mapping in the area is based entirely on  magmatic-way-up 
indicators, metamorphic thermobarometry, and grouping of 
broad rocks types into rock units that predominate at various 
levels. The fi eld relationships and petrographic observations 
and regional-scale geochemistry for every lithostratigraphic unit 
from the Sierra Valle Fertil has been presented in detail elsewhere 
(Otamendi et al., 2009a).

CHEMICAL, ISOTOPIC, AND GEOCHRONOLOGIC 
CONSTRAINTS ON THE PETROGENESIS OF 
PLUTONIC ROCKS FROM THE SIERRAS VALLE 
FÉRTIL–LA HUERTA

Limited Fractionation of Parental Magmas

The parental hydrous mafi c magmas in the Famatinian 
paleo-arc have very low K

2
O contents (0.2–0.4 wt%; DeBari, 

1994; Otamendi et al., 2009a). Consequently, one of the most 
diffi cult compositional features of the igneous sequence to be 
explained by closed-system fractional crystallization is the rela-
tive covariation between K

2
O and SiO

2
 (Fig. 3A). In fact, this 

situation might be generally applicable to arcs because the great 
majority of primitive arc magmas have K

2
O < 0.9 wt% (DeBari, 

1994; Kelemen et al., 2003).
A simple calculation can be used to estimate the extent to 

which the major-element contents of the intermediate and silicic 
plutonic rocks are caused by closed-system fractional crystal-
lization of primitive mafi c magmas. We adopt an approach of 
examining K

2
O and CaO versus SiO

2
 trends, refl ecting the frac-

tionation of rock-forming minerals, specifi cally olivine, amphi-
bole, and Ca-rich plagioclase. Pyroxenes have SiO

2
 contents 

similar to, or even higher than, their host mafi c magmas, and 
hence early fractional crystallization of pyroxenes alone would 
not generate the well-known SiO

2
-enrichment trend of a subal-

kaline igneous series.
At pressures lower than 7 kbar, the sequence of crystalli-

zation as determined by petrographic studies is dominated by 
olivine + plagioclase (An > 90) ± orthopyroxene ± amphibole 
in primitive gabbroic magma chambers (Otamendi et al., 2010) 
and amphibole + plagioclase (An

80
–An

60
) in the gabbronoritic 

to dioritic magma bodies (Otamendi et al., 2009a). The increase 

Figure 3. Representative whole-rock compositional variation for plu-
tonic, metasedimentary, and anatectic granitic rocks from Sierras Valle 
Fertil–La Huerta shown in (A) K

2
O and (B) CaO Harker-type dia-

grams. Vectors shows the compositional changes caused by fractional 
crystallization of distinct rock-forming minerals and the evolution of 
liquid after removing 40 wt% of a given mineral. Pl—plagioclase; 
Amph—amphibole; Ol—olivine.

of SiO
2
 in the derivative magma is caused by fractional crystal-

lization of olivine, calcic plagioclase, and/or amphibole (Foden 
and Green, 1992; Eichelberger et al., 2006; Larocque and Canil, 
2010). Olivine is the fi rst ferromagnesian phase to crystallize in 
the most primitive rocks, but the appearance of olivine is lim-
ited to mafi c-ultramafi c cumulate layered bodies (Otamendi et 
al., 2010). This observation suggests that olivine cannot govern 
the crystallization sequence outside primitive magmatic cham-
bers, and rules out olivine as part of the main assemblage control-
ling differentiation of arc magma from gabbro through diorite to 
tonalite and granodiorite.
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In compositional terms, the effects of amphibole fraction-
ation are broadly similar to those of olivine. The difference is 
that amphibole is found throughout the crystallization sequence, 
which makes amphibole the best candidate for driving the SiO

2
-

enrichment trend (Foden and Green, 1992; Larocque and Canil, 
2010). Amphibole fractionation alone, however, cannot account 
for the well-defi ned decrease of CaO and increase of K

2
O with 

increasing SiO
2
 (Figs. 3A and 3B). To some extent, the combina-

tion of plagioclase and amphibole as early fractionating phases 
may replicate the igneous evolutionary trend, because the incor-
poration of K

2
O in plagioclase is much lower than that of the 

magma (Fig. 3A). However, the CaO abundance of intermediate 
plutonic rocks is typically higher than 3.8 wt% and sets a limit 
to the proportion of calcic plagioclase involved in the process 
of fractional crystallization (Fig. 3B). A simple mass balance 
shows that if plagioclase fractionation were higher than 50%, 
the derivative magma would have CaO lower than those of the 
typical intermediate rocks, and even this proportion of plagio-
clase fractionation (50%) is not enough to yield the K

2
O content 

of common intermediate rocks. In contrast, the linearity of geo-
chemical data as seen in the Harker variation diagrams is com-
monly attributed to two-component magma mixing (Reid et al., 
1983; Gray, 1984).

The K
2
O contents of the Valle Fertil plutonic belt are not eas-

ily accounted for without involving a supracrustal (metasedimen-
tary or its derivative granites) precursor in their ancestry. This is 
a common problem of calc-alkaline Cordilleran granites that was 
strikingly revealed by comparing various experimental petrology 
results with natural arc rocks (e.g., Patiño Douce, 1999).

Age Pattern of Inherited Zircon from the Plutonic Rocks

The age spectra of inherited zircon in the intermediate to 
silicic plutonic rocks provide an independent line of evidence 
for testing the ancestry of source materials of the igneous rocks 
from the Famatinian-Puna arc. The only area that has been 
investigated in detail for that purpose is the Valle Fertil section 
in the Sierra Pampeanas.

In a recent study (Ducea et al., 2010), we determined that 
inherited zircon cores within the plutonic rocks from Valle Fér-
til fi ngerprint several early magmatic events and cover the spec-
trum from Late Archean to early Paleozoic orogenic cycles. That 
paper provides a detailed study of zircon age populations for 15 
plutonic rocks from the Sierra Valle Fértil; here, we evaluate the 
nature of inheritance in plutonic rocks by pooling the population 
of zircon ages older than 520 Ma from that study (Figs. 4A–4C). 
This cutoff age was chosen because it would date igneous or met-
amorphic events predating the fi rst manifestation of the typical 
Famatinian magmatism, but it would still be able to record the 
late stage of the Pampean “orogeny” (e.g., Pankhurst and Rapela, 
1998; Hongn et al., 2010). Figures 4A–4C show the histograms 
of age data and probability plots for representative individual plu-
tonic rocks, which were then combined to construct the inherited 
zircon pattern for a composite of 12 tonalites and granodiorites. 

The pattern of inherited zircon cores pooled from plutonic rocks 
from the Sierra Valle Fértil confi rms at least three well-defi ned 
clusters of ages at around 1090, 600, and 530 Ma (see Fig. 4, 
lowest panel). Overall, this inheritance of zircon ages is typical 
and characteristic of three tectono-magmatic orogenic systems 
that were active from the Mesoproterozoic to the Early Cam-
brian in western Gondwana (de Brito Neves and Cordani, 1991; 
Trompette, 1997; Rapela et al., 2007; Adams et al., 2008; Drobe 
et al., 2009; Collo et al., 2009).

The Early Ordovician plutonism from the Sierra Valle Fértil 
was built up into a supracrustal sedimentary sequence that fi lled 
basins outboard of a western Gondwanan landmass (e.g., Ducea 

Figure 4. Combined histograms and probability plots illustrating the 
age data for metasedimentary and igneous rocks from the Sierra Val-
le Fertil. These plots were constructed with Isoplot 3.00 by Ludwig 
(2003). The number of analyses (y axis) gives the number of ages that 
fall in each histogram bin. Along the x axis, each plot covers a range 
in ages from 200 to 2800 Ma with 40 m.y. bin widths. These histo-
grams are overlain by true probability plots for each of the age ranges. 
(A) Histogram of detrital zircon ages taken after Cristofolini et al. 
(2012). (B) Histogram of inherited zircon ages of plutonic rocks con-
structed using 14 specimens (Ducea et al., 2010). 
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et al., 2010). The spectra of inherited zircon ages preserved 
within the plutonic rocks reveal that the intermediate and silicic 
magmas had incorporated a signifi cant amount of a (meta)sedi-
mentary component, on average around 50% (±20%), based on 
a mass balance using Sr and Nd isotopes. The incorporation of 
inherited zircons must have resulted from widespread partial to 
nearly complete melting of pelitic and semipelitic host rocks and 
subsequent assimilation into the evolving magmas.

Modeling Radiogenic Isotopic Variations

A correlation exists between ε
Nd(i)

 and 87Sr/86Sr
(i)

 among 
rock types and their isotopic composition, because a systematic 
trend of isotopic enrichment ranges from the igneous mafi c to 
the metasedimentary migmatites and their anatectic leucogranitic 
complements (Fig. 5). Dioritic rocks defi ne a cluster of isotopic 
data that appears nearly in the middle of the ε

Nd(i)
 versus 87Sr/86Sr

(i)
 

array between mafi c and metasedimentary migmatites. Tonalitic 
rocks are isotopically more evolved than dioritic rocks in the 
Famatinian-Puna belt; however, the scatter of data for tonalites 
contrasts with a well-defi ned cluster displayed by diorites.

Despite the scatter of data, the initial ε
Nd

 and Sr isotopic 
compositions of rocks from the Famatinia-Puna arc display 
the hyperbolic trend characteristic of many arc plutonic suites 
in which the local upper plate contributes to the mass balance 
of the arc via assimilation (DePaolo and Wasserburg, 1979; 
McCulloch and Chappell, 1982; Gray, 1984). The most plau-
sible interpretation for this data array is that the overall isotopic 
compositions refl ect mixing between two end-member compo-
nents. As a test for mixing, Figure 5 shows the projection of two 
mixing lines connecting the isotopically most primitive mafi c 
rocks with either a metasedimentary migmatite or an anatectic 
leucogranite derived from partially melting metasedimentary 
rocks. The observation that several plutonic rocks fall within the 
band predicted by different two-component mixing hypotheses 
suggests that each plutonic rock is a hybrid product between a 
mantle-derived component and some (supra)crustal material, 
and that isotopic differences among rocks result from variable 
proportions of end-member components in the mixture (e.g., 
Gray, 1984).

Most primitive gabbroic rocks from Pocito and Valle Fértil–
La Huerta suggest that the mafi c component involved regionally 
in the Famatinian arc is isotopically enriched (Fig. 5; also see 
Kleine et al., 2004; Otamendi et al., 2012; Casquet et al., 2006). 
This refl ects the existence of an ancient incompatible element–
enriched subcontinental lithospheric mantle residing beneath the 
Early Ordovician arc. An alternate possibility is incorporation 
of melts and/or fl uids released by the subducted sediments and 
oceanic crust into the mantle wedge. We do not favor the second 
hypothesis because, as shown elsewhere (e.g., Ducea and Barton, 
2007), it would be unlikely to modify the isotopes (especially 
Nd isotopes) by slab-wedge interaction and still produce primi-
tive mafi c rocks. The primary material that makes up the mantle-
derived component in this arc is continental lithosphere.

The most obvious candidate for a crustal end member is 
represented by the widespread Neoproterozoic to Early Cam-
brian Puncoviscana trough sedimentary sequences (Ježek et 
al., 1985; Mángano and Buatois, 2004; Zimmermann, 2005) 
or their metamorphic equivalents (Rapela et al., 1998; Becchio 
et al., 1999) and the Late Cambrian to Early Tremadocian for-
mations, broadly known as Mesón Group, Negro Peinado, and 
La Aguadita (Aceñolaza, 2003; Collo et al., 2009). All of these 
sedimentary sequences were buried, and thus they hosted and 
interacted with Early Ordovician magmatism. In contrast, post- 
Tremadocian sedimentary sequences are excluded as potential 
sources of crustal granites because they are coeval with or even 
younger than the main plutonic arc activity (Mángano and Bua-
tois, 1996; Bahlburg, 1998; Zimmermann and Bahlburg, 2003). 
Both Sr and Nd isotopes have been measured in metasedimentary 
rocks metamorphosed from greenschist- to granulite-facies con-
ditions (Rapela et al., 1998; Becchio et al., 1999; Pankhurst et al., 
1998). As the Sr- and Nd-isotopic compositions broadly overlap 
within the scatter of data, the sedimentary packages metamor-
phosed during the Early Cambrian (i.e., Pampean arc) and Early 
Ordovician (i.e., Famatinian-Puna arc) can be considered as a 
single isotopic component. These metasedimentary packages 
typically have initial 87Sr/86Sr higher than 0.713 and a wide range 
of ε

Nd(i)
, from –3 to –10. The Late Cambrian low-grade metasedi-

mentary sequence from Famatina has broadly the same ε
Nd(i)

 val-
ues as those measured in schists and gneisses from the northern 
Sierras Pampeanas (Collo et al., 2009).

Purely granitic magmas generated after partially melting the 
fertile metasedimentary sequences, as suggested earlier, are a 
second crustal component for contaminating the evolving lineage 
of mantle-derived magmas. In terms of isotopic signature, strict 
granitic rocks seem to be divisible into two groups. One group 
of these granites clearly lies inside the isotopic compositional 
fi eld of the metasedimentary sequences (Fig. 5). Therefore, as 
suggested by their whole-rock compositions, these granites crys-
tallized from magmas solely generated after partially melting 
metasedimentary packages (Dahlquist et al., 2005). In contrast, 
some granite from the Sierra de Chepes studied by Pankhurst et 
al. (1998) has initial 87Sr/86Sr values much lower than those of 
typical metasedimentary rocks.

Regardless of the actual crustal contaminant, interaction 
between mafi c magmas and upper-plate (local crust) supracrustal 
material provides the easiest explanation for the origin of inter-
mediate and silicic plutonic rocks. The great majority of the inter-
mediate and silicic plutonic rocks from the Famatinian-Puna arc 
appear nearly in the middle of the 87Sr/86Sr

(i)
–ε

Nd(i)
 hyperbolic array 

between mafi c primitive and metasedimentary/granitic compo-
nents (Fig. 5). The lack of measurement of one isotopic system 
impedes projection of many other plutonic and volcanic rocks 
that either have 87Sr/86Sr

(i)
 between 0.706 and 0.710 (Mannheim, 

1993; Saal et al., 1996; Saavedra et al., 1996) or ε
Nd(i)

 between 
−2 and −6 (e.g., volcanosedimentary successions in Bock et al., 
2000), but several of these Early Ordovician igneous rocks would 
most likely lie on the middle of the hyperbolic trend predicted 
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by the two-component mixing model. Our partial compilation of 
isotopic data gives evidence that most of the diorites, tonalites, 
granodiorites, and some monzogranites from the Famatinia-Puna 
arc fall on the hyperbola of two-component mixing where the end 
members are a primitive mafi c igneous suite and a crustal mate-
rial. However, we avoided modeling a particular case, because it 
has been shown that the mixing process is neither a single-step 
mechanism nor solely moved by magma mixing (Eichelberger 
et al., 2006). In effect, some middle member of the igneous suite 
may derive by hybridization in which one member is already a 
hybrid product between the two extreme end members (Beard, 
2008; Otamendi et al., 2009b). Isotope variations would thereby 
refl ect the end result of more complex petrogenetic mechanisms 
than two-component mixing, but in fact every single plutonic 
rock embodies the two components mixed at variable propor-
tions. Moreover, the evidence extracted from isotopes is per-
fectly consistent with conclusions made from observing major-
element variations. Also signifi cant is that, at deep-seated levels 
from the Early Ordovician paleo-arc crust, there are observable 
fi eld relationships supporting the occurrence of open-system pro-
cesses (Otamendi et al., 2009b). Finally, the juvenile mafi c and 
the crustal metasedimentary end members seem to be universal, 
as they have been found to play their role in most of the world-
wide recognized Cordilleran-style plutonic chains, such as the 
Sierra Nevada and Peninsular Range (DePaolo, 1981; DePaolo et 
al., 1992; Pickett and Saleeby, 1994), and the Lachlan fold belt 
(Gray, 1984; Collins, 1996; Keay et al., 1997; Kemp et al., 2009).

PETROLOGIC IMPLICATIONS

Data for the high-grade partially melted metasedimentary 
rocks from Valle Fértil and La Huerta exhibit remarkably similar 
major-element contents to those of the medium- and low-grade 
metasedimentary rocks and sedimentary rocks elsewhere in the 
Early Ordovician magmatic belt (Fig. 6A). All these metasedi-
mentary and sedimentary rocks defi ne linear arrays for most 
major oxides against silica, refl ecting the fact that they encom-
pass pelites (SiO

2
 ∼59 wt%) to quartz-rich graywackes (SiO

2
 

∼80 wt%). Within the major-oxide covariant diagrams, the high-

grade metasedimentary rocks from Valle Fértil and La Huerta 
fall across the low-potassium limit, which is consistent with their 
having undergone partial melting and melt loss (Fig. 6A). Major-
element whole-rock compositions do not provide solid con-
straints for correlating sedimentary rocks, because the chemistry 
of sediments refl ects the mechanical unmixing of clay and sand 
that takes place in every sedimentary cycle (Taylor and McLen-
nan, 1985). However, the correlation of major elements strongly 
suggests that the sedimentary packages that were stacked, bur-
ied, and metamorphosed between the Late Neoproterozoic and 
Early Ordovician had broadly similar sedimentary sequences 
of facies to those that remained in the upper crust (Fig. 6A). A 
sedimentary sequence made up by alternating beds of pelites and 
graywackes has the largest potential to produce granitic melts 
when experiencing granulite-facies temperatures (Thompson, 
1996). By implication, the combination of fertility and volume 
of the Late Neoproterozoic and Early Ordovician sedimentary 
packages can account for all the felsic weakly and strongly per-
aluminous granites from the Ordovician system. Granitic batho-
liths entirely made up by peraluminous granitoids document that 
massive crustal anatexis occurred where a large-scale heat input 
acted upon widespread metasedimentary sequences (Rossi et al., 
2002; Dahlquist et al., 2005). Our compilation of data also shows 
that metasediment-derived granites appear in almost all of the 
localities from the Early Ordovician magmatic system, and hence 
refl ect crustal anatexis that took place pervasively at lower- to 
middle-crustal levels of the Famatinian-Puna paleo-arc (Fig. 6B). 
The importance of this interpretation, as inferred from fi eld and 
compositional observations, is that metasediment-derived gran-
ites derived from partial melting of the upper plate are an essen-
tial component for driving the igneous evolutionary trend from 
gabbroic to monzogranitic rocks.

However, intracrustal melting of the metasedimentary 
sequence alone does not explain the vast volume of plutonic and 
volcanic rocks from the Early Ordovician magmatic belts. The 
plutonic suite spanning the range from gabbros to monzogranites 
has MgO, FeO, and CaO contents as well as Na

2
O/K

2
O ratios 

that are too high to be derived from any siliciclastic sedimentary 
protolith (e.g., Patiño Douce, 1999). Contrasting with the relative 
compositional homogeneity of the crustal granites, the igneous 
suite from gabbros to monzogranite spreads over a wide range 
of petrographic and chemical rock types (Figs. 6B and 6C). In 
effect, the nature of the latter suite of igneous (plutonic and vol-
canic) rocks needs to be further evaluated in the Early Ordovician 
magmatic belts.

Typical localities within the Famatinia-Puna magmatic arc 
consist of igneous rock suites with a compositional trend of 
increasing K

2
O with increasing SiO

2
 (Fig. 6B). This trend is also 

a distinctive characteristic of the Valle Fértil–La Huerta igneous 
suite and, as shown already, requires, to a large extent, a driv-
ing mechanism by crustal contamination of the evolving igneous 
magmas. As Figure 3A illustrates, at some point in the generation 
of the Early Ordovician igneous suites, every rock more evolved 
than a typical diorite must have incorporated a crustal component 

Figure 5. Isotopic composition of rocks from Sierras de Valle Fertil–La 
Huerta compiled after Otamendi et al. (2009a, 2010, 2012). (A) Varia-
tion of 87Sr/86Sr at 471 Ma vs. SiO

2
. (B) Variation of ε

Nd
 at 471 Ma vs. 

SiO
2
. (C) Plot of ε

Nd
 vs. 87Sr/86Sr ratios (at 471 Ma) for plutonic rocks, 

metasedimentary migmatites, and anatectic and leucogranites. Hypo-
thetical mixing models were computed using a primitive gabbroic rock 
and three potential crustal components. Mineralogy and whole-rock 
compositions of end-member rocks were provided in our previous 
studies. Tick marks on mixing lines are at 0.1 end-member fractions. 
(D) Plot of ε

Nd
 vs. 87Sr/86Sr ratios (at reported crystallization age) for 

rocks in type localities from the Famatinian-Puna arc. The geograph-
ic position of each locality is shown in Figure 2. Insets give the data 
sources for each locality. The three mixing lines computed for Valle 
Fertil and La Huerta rocks are shown for comparison.
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through either assimilation of metasedimentary rocks or interac-
tion with metasediment-derived melts.

A signifi cant volume of Early Ordovician magmatism 
erupted as either lava fl ows or pyroclastic rocks (Mannheim, 
1993; Mannheim and Miller, 1996; Coira et al., 1999; Zimmer-
mann and Bahlburg, 2003; Viramonte et al., 2007; and references 
therein). Field relationships are unequivocal about the comple-
mentary nature between Early Ordovician plutonic and volcanic 
rocks. In addition, the few available data for Famatinian-Puna 
volcanic rocks show compositional similarity with plutonic 
rocks (Fig. 6D). Thus, the same petrologic mechanisms as those 
observed for plutonic rocks were responsible for governing the 
whole-rock composition of eruptive volcanic sequences, with a 
slightly higher K

2
O at a given content of SiO

2
 for the volcanics.

IMPLICATIONS FOR CONTINENTAL 
ARC MAGMATISM

The Famatinian arc was clearly a continental arc, as it strad-
dles the western margin of Gondwana in the modern coordinates 
of South America. There is no evidence that the South American 
cratonic basement crust was involved in magmatism in the Sierra 
Valle Fertil region; instead, the arc was emplaced exclusively into 
an extensive sedimentary assemblage that most likely constituted 
the accumulation of submarine passive-margin sediments along 
Gondwana’s margin during the Neoproterozoic and early Paleo-
zoic prior to subduction. However, all gabbros that have been 
analyzed in this section have radiogenic isotopic characteristics 
typical of old (Precambrian) continental lithosphere (Otamendi 
et al., 2009a, 2012), suggesting that South American lithosphere, 
perhaps thinned at a miogeoclinal margin, was in fact the frame-
work of this arc. There is also no evidence that the crust became 
unusually thick during the Famatinian arc magmatism, as no 
rocks deeper than ~25–30 km are exposed at the surface to the 
west of the studied area, based on our preliminary fi eld observa-
tions and mapping of index minerals within metamorphic frame-
work rocks, or elsewhere within the exposed plutonic framework 
of the Famatinian arc in central South America. In addition, there 
is also no evidence for crustal magmas (felsic plutons or volca-
nics) that were derived from thicker parts of the crust. No shorten-
ing or extension disrupted the architecture of the section studied 
here during arc formation. Instead, the arc developed statically 
as a series of sills progressively emplaced into the existing crust, 
similar to the early stages (Jurassic) of Cordilleran magmatism in 
North America and to Cordilleran interior arcs that developed in 

North America during periods of shallow subduction as magma-
tism migrated inland (Barton, 1996).

We show that magmatic input from the mantle at an aver-
age rate of mafi c arc magmatism worldwide (Ducea and Barton, 
2007) can provide enough heat and mass available for mixing 
with a preexisting metamorphic basement to generate a batholith-
scale crustal section within a short period of time, some 15 m.y. 
or less. The architecture of the arc is one of multiple tens- to 
hundreds-of-meters-thick amphibole-rich gabbroic sills injected 
into a midcrustal section, where they mixed with partial melts 
derived from a metasedimentary framework. All mantle-derived 
melts intruded in the section were wet gabbros, and magmatic 
fractionation trends observable through fi eld relationships sug-
gest that some of these bodies transitioned to mafi c diorites in 
their upper parts via closed-system fractionation. There is no 
evidence that gabbros in this section fractionated to interme-
diate (higher silica) rocks, nor is there evidence that they ever 
remelted to generate more felsic melts. A signature feature of the 
entire Sierra Valle Fertil area is that virtually every outcrop in 
which we observe transitions from the mafi c to tonalitic/grano-
dioritic rocks is in close proximity to a metasedimentary pendant 
or contains “ghosts” of it (identifi able rock enclaves, areas rich 
in cordierite and almandine garnet) within the more felsic units. 
Thus, we use our extensive fi eld observations at the scale of this 
study and a moderate knowledge of the entire range to state that, 
with the exception of local closed-system fractionation to mafi c 
diorite of gabbroic sills, the entire compositional diversity of 
the  Famatinia-Puna arc—which includes the full compositional 
spectrum of Cordilleran calc-alkaline suites such as quartz dio-
rites, monzonites, tonalites, granodiorites, and granites—was 
generated by various hybridization processes between mantle-
derived gabbros and diorites and the Puncoviscana metasedimen-
tary rocks and their high-grade equivalents.

We suggest that any incipient arc that developed on a con-
tinental upper plate in a subduction system may have similar 
characteristics to the Famatinian-Puna arc. They are static arcs 
emplaced as a series of mafi c sills that ignite melting of and mix-
ing with their framework rocks at magmatic rates that can be 
higher than 100 km3/km/m.y., depending on the extent to which 
the framework is melt fertile (e.g., Annen and Sparks, 2002). 
The late Paleozoic and early Mesozoic arcs of the North Ameri-
can Cordillera are equivalents to the Famatinian arc. In addition, 
island arcs emplaced into crust that experience long-lived subduc-
tion and have sizable trench and forearc accumulations (like mod-
ern Japan, the Caribbean, and parts of the Aleutians) where the 
upper plate is continental may have a similar crustal architecture.

CONCLUSIONS

1. Field relationships, the pattern of inherited zircon ages, 
and whole-rock compositional (elemental and isotopic) evidence 
clearly indicate that crustal contamination accompanying frac-
tional crystallization explains the genesis of intermediate and 
silicic plutonic rocks of the Famatinian arc; on average a  mixture 

Figure 6. (A) Plot of K
2
O vs. SiO

2
 for plutonic and volcanic rocks 

in the Famatinian-Puna magmatic arc. The positions of lines separat-
ing low-, medium-, and high-K fi elds in the K

2
O vs. SiO

2
 diagram 

are taken after LeMaitre et al. (1989). (B) Schematic representation of 
petrologic process in the K

2
O vs. SiO

2
 covariation system. (C) Plot of 

Na
2
O/K

2
O ratios for same rocks as in panel A. (D) Plot of K

2
O vs. SiO

2
 

for volcanic rocks in the Famatinian-Puna magmatic arc.
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of ~50% mantle-derived gabbros and 50% crustal melts is sug-
gested by fi eld relationships in the Sierra Valle Fertil and is con-
sistent with geochemical data.

2. Virtually every igneous rock more evolved than gabbros or 
basalts has been contaminated with a (supra)crustal component; 
model ages from all intermediate and silicic igneous rocks refl ect 
the mixture between a Grenville-aged average crustal source and 
an underlying old continental mantle wedge.

3. The lithospheric architecture of the modern Cordilleran 
interior of the central Andes, including the Altiplano-Puna Pla-
teaus, the Eastern Cordilleran region, and the western Sierras 
Pampeanas, has been profoundly infl uenced by the development 
of the Famatinian-Puna arc.

4. The Famatinian-Puna arc is an ancient equivalent of arcs 
formed on thin continental lithosphere covered by thick miogeo-
clinal sequences soon after subduction initiation.
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