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A~ct-Motivated by phase change technologies of geological materials, the tame-de~ndent conjugate 
solidification and melting of multicomponent materials are considered in one dimension with open and 
closed thermal convection. The scaling of the driving temperature difference for convection is a function 
of the temperature difference between the isotherm which delimits a rigid mush from a slurry, and the 
free stream temperature. The temporal evolution of the solid and mushy zones for the open system 
multicomponent case is qualitative similar to the single component case. Maximum heat transfer rates are 
as much as 1.35 times that of coupled, conductive solidification/melting. The convecting, closed system case 
yields two possible outcomes : a monotonic progression of solidi~cation or an oscillation in the positions 
of the isotherms, depending on the ratio of the heat transfer coefficient to the enthalpy content and 

geometry of the fluid reservoir. 

1. INTRODUCTION 

THE FORMULATION and development of self-consistent 
transport models for multicomponent phase change 
is the subject of increasing attention. This is motivated 
by a variety of issues in applied and pure science: 
energy storage in phase change materials (PCM), the 
in situ vitrification (ISV) of hazardous waste, the 
engineering of geothermal heat exchangers, the assess- 
ment of volcanic hazards, and fundamental questions 
related to the origin and evolution of magmas. The 
dominant obstacle in the quantitative treatment of 
these strongly non-linear problems is that they often 
involve multicomponent materials and spatially de- 
pendent enthalpy changes; it is difficult to a priori pre- 
dict the temporal distribution of crystals and liquid. 
In addition, many of the applications require consider- 
ation of conjugate, or coupled, solidification/ 
melting systems. The purpose of this study is two- 
fold: (a) to address complexities of solidification/ 
melting of geological materials, and (b) to model the 
generic features of the scaling and transient, multi- 
component, conjugate solidification and melting in 
a semi-in~nite medium coupled to either an open 
or closed convecting fluid reservoir. 

Recent reviews of the burgeoning literature on the 
heat and mass transfer attendant with phase change 
can be found in refs. [l-4]. Among the more notable 
contributions to the physiochemical theory of multi- 
component phase change are the works of Hills, 
Roberts and Loper [S-I l] and those from the group 
at Purdue University, e.g. refs. [12, 131. There have 
also been a variety of laboratory experiments of multi- 
component systems, typically salt solutions [l-3, 14, 
151, in an attempt to identify some of the generic 
elements of the heat and mass transfer. The laboratory 

experiments provide a qualitative means to investigate 
the diversity of fluid structures and macrosegregation, 
however, it is apparent that buoyancy is generated 
locally in a complex manner and hence, there are 
scaling problems when applying these experiments to 
systems of engineering and geological interest 113, 
161. In an effort to explore a wider parameter range, 
numerical methods have been applied to the problems 
of multicomponent phase change [13, 17, 181. 
Although qualitative agreement is good, they do not 
agree with the laboratory experiments in all aspects 
of the macrosegregation and are also computationally 
expensive [13, 171. 

Part of the difficulty lies in the continuum descrip- 
tion of a crystal-liquid mush. To this end, Hills, Loper 
and Roberts make one important distinction in their 
work : the difference between a mush and a slurry. A 
mush is an assemblage of crystals with an interstitial 
melt phase; a slurry is a mixture where crystals are 
distributed in an expanse of melt. The term ‘mush’ 
will be used in this paper in the same spirit : to indicate 
an essentially rigid and porous region of crystals and 
melt. One key element in the mush-slurry distinction 
is that the transition from a mush to a slurry is a 
rheological one. The self-partitioning of a multi-phase 
system into regions of mush and convectable, mobile 
slurry was further explored in the axiomatic work of 
Brandeis and Marsh [19] who introduced the concept 
of the convective liquidus. The convective liquidus is 
defined as the temperature below which convection is 
weak or non-existent. A related concept originating 
in the metallurgical literature is the concept of the 
contiguity limit. Contiguity is a measure of solid-solid 
grain contact 120, 211 and the contiguity limit is the 
volume melt fraction at which a ‘rigid aggregation 
of crystals takes on suspension-like behavior. In the 
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NOMENCLATURE 

01, coefficient in the polynomjal t time 
representation of the sotid fraction V volume of material per unit area of cooling 
distribution, equation (10) surface. 

h shape factor in temperature 
approximation. equation (12) Greek symbols 

B parameter group, equation (9) l- parameter group defined in equation (25) 

2 
specific heat capacity 6 thickness of the ith region 
power of the temperature in the parametric A dimensionless thickness of the ith region, 
treatment of convection, equation (20) equation (28) 

n normalized difference between thickness of 0 dimensionless temperature, equation (8) 
ith region in the multicomponent to K thermal diffusivity 
single component case P density 

fl solid fraction distribution r dimensionless time, equation (8). 
h spatially averaged parameter group from 

heat transfer coefficient, equation (20) Subscripts 
k thermal conductivity CL convective liquidus 
L specific latent heat CR country rock 
A#, mass of melt per unit area of cooling CRS country rock solidus 

surface L liquid (melt) 
Q heat flux convecting melt m0 initial melt values 
St modified Stefdn number solid region 
T temperature s, value at time equal to zero. 

geophysical literature this rheological transition is 
called the critical melt fraction [22, 231. 

The actual value of the convective liquidus is often 
difficult to predict and there is very little unequivocal 
geological data to indicate what solid fraction cor- 
responds to the convective liquidus [19, 211. It will no 
doubt be a function of strain rate, liquid viscosity, 
gradient in volume percent melt, and the usual trans- 
port properties and, hence, composition. Based on 
a few experiments and geological observations the 
convective liquidus can be anywhere from the iso- 
therm corresponding to a few percent crystals to about 
50% [ZI, 231. Knowledge of this parameter is criti- 
cal in quantifying the heat transfer systematics in 
geological systems, particularly the ISV process, as 
magmas can simultaneously have regions that arc 
behaving as mushes and as slurries. This is apparent 
upon examination of the products of geological 
activity, such as lava flows, where crystals commonly 
exist in a distributed fashion within a glassy or hypo- 
crystalline matrix indicating heterogeneous nucleation 
and growth throughout the magma. Magmas (silicate 
melts) also solidify from the margins inward, as dem- 
onstrated by the Hawaiian lava lakes [24] and in 
many plutons; also see the discussion in ref. [25]. It 
is difficult to know the relative importance of pro- 
cesses operating in the mushy zone as opposed to 
the slurry in producing the chemical diversity seen 
in the geological record. 

Geological systems differ from metallurgical sys- 
tems in a number of ways. For example, the initial 
and boundary conditions and geometry may differ. 

Magmas are rarely superheated, and nucleate hetero- 
geneously at small undercoolings of _ 10-2-10-4”C 
[26]. The boundary conditions are also different, 
magmas are usually surrounded by a semi-infinite 
conducting medium and hence the vigor of convection 
and progress of solidification in magmas will be 
modulated by the enthalpy transport processes in the 
adjoining ‘country rock’ [27, 281. Depending on the 
degree of supercooling in the country rock, the degree 
of superheat in the magma, and the value of the con- 
vective liquidus, the magma may initiate melting in 
the country rock which itself could undergo a fluid 
instability and alter the time and length scales of the 
solidification process, The heat and mass transfer 
associated with this coupled process of solidification 
and melting constitutes a conjugate system. 

The problem of conjugate solidification of a singie 
component fluid in forced flow in pipes or molds 
has received some attention [4]. One important result 
from these works is that the thickness of the solid 
will change with time as a function of supercooling, 
superheating, style and duration of convection and 
composition. Conjugate heat transfer attendant with 
single component solidification or melting in the pres- 
ence of natural convection has recently been treated 
by Bejan and co-workers [29-3 I]. They emphasize the 
dynamic nature and intrinsic time dependence of the 
length scales in conjugate phase change problems. 
Conjugate solidification and melting of multi- 
component systems has received very little attention 
and as demonstrated below can differ markedly from 
the single component case. 
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FIG. I. Initial condition of coupled solidification/melting 
system. At time equal to zero, a well mixed melt is brought 

into contact with cold surroundings. 

The focus of this contribution is to bring together a 
number of the issues considered above and to explore 
some of the generic aspects of the coupled system 
shown in Fig. 1 in a context that will have application 
to both the engineering of molten geological materials 
and the broader questions of scientific interest. This 
is the first of a number of reports detailing both 
numerical and experimental investigations of coupled 
solidification/melting of multicomponent materials. 

2. PROBLEM FORMULATION 

Consider a semi-infinite multicomponent solid 
initially at temperature T,-, which is below its melting 
temperature and suddenly brought into contact with 
a multicomponent fluid reservoir initially at tem- 
perature T,,,, (Fig. 1). After some time the enthalpy 
transfer from the liquid reservoir to the solid may 
have initiated melting in the solid with concomitant 
solidification in the liquid. As both solid and liquid 
are multicomponent materials, but not necessarily of 
the same composition, the phase change process will 
yield regions of mixed solid and liquid phase on both 
sides of the original contact. The simultaneous propa- 
gation of the regions of melting and freezing comprise 
a conjugate system where the heat transfer sys- 
tematics are intimately coupled to the degree of super- 
cooling, superheating and physical chemistry. We will 
consider cases where the enthalpy content of the fluid 
reservoir is both finite and infinite. The heat transfer in 
the mushy zone will be assumed to be by conduction ; 
convection in the all fluid portion will be treated by 
invoking a heat transfer coefficient formulation. 

Using a conduction equation to describe the heat 
transfer in the mushy zone has some justification 
based on the work of refs. [32-351 where it is argued 
that the Peclet number for flow in the mush is much 
less than 1. Although a number of numerical and 
experimental models of the solidification of salt solu- 
tions show rather remarkable degrees of macro- 
segregation driven by double-diffusive convection [ 13, 

14, 171, we are assuming that, to first order, this global 
redistribution is locally negligible with regard to the 
heat transfer. This assumption may be a good one for 
the geological case where melt viscosities can be very 
high and hence interdendritic flow may be an 
inefficient means of heat transfer [3&38], or for sys- 
tems where the change in liquid density due to the 
selective removal of components into the solid phases 
may be small. 

A genera1 expression for the heat transfer in both 
the regions of melting and solidification is 

ar k d2T L df,(T) 
-= 
dt 

p’f,,dt-. 
pep ax 

The source term in equation (1) accounts for the latent 
heat effects as a function of temperature by the change 
of the volume solid fraction, f,(T). This form of the 
heat equation for mushy zone evolution is obtained by 
writing the energy equation in terms of the primitive 
variable enthalpy and then decomposing the enthalpy 
expression into the sensible and latent heat con- 
tributions as discussed in refs. [35, 39,401. Additional 
complexity can be introduced by writing the heat 
capacity and thermal conductivity in equation (1) as 
functions of the solid fraction. 

The structure of equation (1) allows the usual simi- 
larity variable formulation [41] regardless of the form 
offS( T) ; if the volume percent solid fraction has a non- 
linear dependence on temperature then the resulting 
ordinary differential equation is non-linear. This sim- 
plification is used in refs. [39, 421 to solve conjugate 
solidification problems in the absence of convection. 

The method of weighted residuals is used here to 
solve the governing equations given below and the 
interested reader is directed to refs. [43,44]. The basic 
procedure is to expand the solution in a set of trial 
and weighting functions, the weighting function 
chosen such that an inner product with the weighting 
function over one of the independent variables is zero. 
If the weighting function is taken as unity, one obtains 
the integral method of Goodman [45]. 

Figure 2 shows a variety of solid fraction dis- 

FIG. 2. 
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Melt fraction distributions for some common I rocks. 



tributions for commonly occurring rock types. The 
curves need not be smooth or continuous : as phases 
are consumed or new phases become stable, the slope 
of the solid fraction curve will change. The presence 
of invariant points, such as eutectics, will yield jumps 
in the solid fraction distribution. The methodology 
adopted here was to subdivide the solution domain 
into regions delimited by isotherms wherein the solid 
fraction distribution curves are continuous. The iso- 
therms can be chosen such that jump conditions in 
the solid fraction distribution occur at the edge of a 
subdomain i. Thus, equation (1) yields a series of 
coupled equations of the form 

dT -i ki S’T, L, d&(7;) 

i?t = G .x2+ $ dt 

L,(t) G x c h(t) (2) 

(3) 

Q(r) + 2 (p,L,Aj-, 
/ 

where equation (3) provides for the continuity of heat 
across adjacent subdivisions where the last term on 
the right-hand side accounts for jumps in the solid 
fraction distribution and equation (4) gives the flux 
at the jth interface between the mushy zone and the 
fluid reservoir. The first term on the right-hand side 
of equation (4) is the time-dependent flux associated 
with either free or forced convection and whose speci- 
fic form will depend on both the extensive and inten- 
sive variables as well as the geometry. The next terms 
in equation (4) account for heat transfer associated 
with the moving interface : the enthalpy change associ- 
ated with solidification and a term to account for the 
virtual suction experienced by an interface which is 
moving in a fluid with a different temperature. Note 
that in equation (2) the domain is moving as the 
positions of the bounding isotherms themselves are 
unknown. A similar methodology has been previously 
employed by Voller [39, 461. 

Once fs,(TJ and a set of trial functions for U&z, z) 
are given, the mathematical reduction of equation 
(5) can proceed. A generic expression for the solid 
fraction as a function of temperature across the ith 
subdivision can be obtained by invoking a polynomial 
approximation in Ti 

where the choice of a, can be obtained by a curve 
fitting procedure. We note that 

--=_ (11) 

The temperature is assumed to be adequately repre- 
sented by a second-order polynomial 

Equation (2) can be recast as 
Oi(X, t) = 

.x-s,_, __- 
s,-S(_, + 

(5) 

where 
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B = k:V,- Tat)’ c,,(T, - T5, ,I 

Q&s ” 
St, = _ . LL. ._1_ . (9) 

The characteristic length scale that appears impli- 
citly in z and Bi warrants some discussion. One of the 
fundamental features of conjugated heat transfer in 
semi-infinite domains, where the thermal potentials 
are specified in the far-field rather than at the inter- 
faces between the coupled systems, is that the charac- 
teristic length scale is time dependent and hence a 
priori unknown and represents one of the degrees of 
freedom in the quantitative treatment of the problem. 
The implication of this is that the system is intrin- 
sically time dependent. Melting and/or solidification 
problems also share this feature: the length scale 
associated with the thermal resistance across a grow- 
ing region of mixed phase is coupled in a non-linear 
way to the driving thermal potentials. The length scale 
chosen here reflects a matching of the initial thermal 
loading due to convection at the edge of the mushy 
zone, Q,,, and the heat carrying capacity associated 
with the system supercooling relative to the con- 
ductivity temperature product at the edge of the mush. 

k,(7”c, - TcR). 

do 
,=~iil+hi~~)[1+2(~~~~)]}. (13) 

Next, equation (5) is integrated with respect to the 
spatial inde~ndent variable which yields an 
expression of the form 
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where 

(15) 

Upon integration, the exact form of equation (10) 
will depend on M, the number of terms taken in the 
~lynomial approximation to the solid fraction dis- 
tribution. For example, if m = 2 equation (10) yields 

= 2Bib,. (16) 

The equations for the temperatures about the con- 
tact zone where i = 1 (see Fig. 1) require additional 
discussion. In the absence of convection the contact 
temperature will be constant in time; if convection is 
present, the temperature at this contact will change 
and becomes an additional dependent variable. The 
dimensionless contact temperature is defined as 

(17) 

and the polynomial expression for 0, (x, 7) is 

@,(x,z) = H,+~+b,(r)x(L-;). (18) 
i I 

The value of the solid fraction at the contact will also 
be a function of time and hence an iterative scheme is 
required to ensure that the solid fraction is consistent 
with the contact temperature. Upon diffe~ntiation, 
equation (14) gives a set of initial value, coupled, 
ordinary differential equations with explicit depen- 
dent variables O,, 6, 6,_ , . The implicit dependence on 
values of 6 down the thermal gradient from region i 
appear through the presence of b, 

(19) 

The bi or ‘shape functions’ are found from the require- 
ment of continuity of flux at the interfaces between 
each ith subdivision as given by equation (7). 

2.1. Specification of the solid fraction distribution 
The specification of the solid fraction distribution 

(10) requires an equilibrium phase diagram or phase 
equilibria laboratory experiments. If the phase dia- 
gram is available, the ‘lever rule’ is typically applied to 
yield the solid fraction as a function of tem~rature ; 
an additional and often encountered assumption is 
that the liquidus curve is linear. Implicit in this prac- 
tice is that some degree of equilibrium is assumed 
and that the rate controlling steps can be identified. 
Examples and discussions of the expressions for the 
solid fraction dist~bution have been given by Clyne 
and Kurtz 1471, and Hills and Roberts [6] and are 
based on a modified form of the Scheil equation. 
Unlike the metallurgical systems of engineering inter- 
est, geological systems display a wide variety of solid 
fraction distributions as can be seen in Fig. 2, where 
the number of phases can be up to six or more. 

An additional, and important, consideration is that 
the solid fraction during melting may not be a simple 
reversal of the solidification curves as the crystals may 
be zoned and hence present a changing compositional 
face as melting proceeds [7, lo]. In addition, volatile 
constituents may exist metastably in the form of struc- 
turally bound water in the inosilicates and phyllo- 
silicates and upon melting yield large jumps in melt 
percentage over small temperature intervals as seen in 
Fig. 2. A heterogeneous spectrum of crystal sizes will 
also influence the rate at which melting proceeds [48] ; 
this has been observed in the in situ vitrification field 
experiments where cobble size clasts behave as refrac- 
tory components and can have a profound effect on 
the geometry and heat transfer systematics of the melt 
pool. Finally, caution must be exercised when using 
the fsi(T,) obtained from experimental data, such as 
that in Fig. 2, in transport models. These curves are 
constructed by interpolating between data points that 
represent discrete experiments where it is implicitly 
assumed that the kinetics of passing from one exper- 
imentally determined value of the solid fraction to the 
next along the fsj( 1;) curve are negligible. 

2.2. Para~eteri~ation of the con~~ection in the Iiquid 
region 

The time dependence of the convective contri- 
bution, Q(t), in equation (4) has three components. 
The first is related to the boundary layer rise time 
which represents the time it takes for the fluid bound- 
ary layer to become two-dimensional everywhere and 
to adjust itself to changes in the geometry of the fluid 
reservoir as melting proceeds ; this has been treated in 
some detail by refs. [29-3 11. The second follows from 
the fact that the cold thermal reservoir is a semi- 
infinite medium, hence the thermal wave propagating 
outward into this initially supercooled domain will 
never reach a boundary of fixed thermal potential 
[29]. The third cause of time dependence follows from 
the nature of the initially warm fluid reservoir: for 
a system with a finite enthalpy content, the driving 
temperature difference in Q(t) will decay. If one wall 
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is heated, or thermally forced, as in the examples con- 
sidered by refs. [B--31], then the enthalpy content of 
the warm fluid reservoir is essentially infinite. While 
this is a good assumption for many scenarios of engin- 
eering interest, geological cases are probably better 
represented by a closed system. We will consider both 
cases here. We will ignore time dependence associated 
with the first of the components given above: it is 
assumed that the convective structures have an infi- 
nitely fast rise time and hence the iength scales in 
the heat transfer coefficient are not explicitly time 
dependent. 

The expression for the flux at the edge of the mushy 
zone in the fluid reservoir is 

where &is a spatially averaged parameter group whose 
form will depend on the reservoir geometry and 
assumptions regarding the state of the flow : Iaminar 
or turbulent, free or forced, etc. The constant Q0 that 
appears in equations (8) and (9) above is the value of 
Q(r) at r = 0. 

The temperature difference appearing in equation 
(20) requires some discussion. It is apparent that it 
will be the temperature difference between the mixing 
cup temperature of the fluid reservoir, which may be 
time dependent, and the temperature at the mushy 
zone-fluid interface, 6,. Recall that the temperature 
difference appearing in equation (20) is that between 
the fluid reservoir and the convective liquidus [ 191. 

For the closed system calculations, the fluid tem- 
perature itself will be time dependent : natural con- 
vection will lead to cooling of the melt pool. The 
dimensionless form of the well mixed fluid tem- 
perature is 

where the overbar in equation (21) indicates average 
quantities. The expressions for the total solid and 
liquid per unit area at any time are given by 

j-l a,,, 

k<‘,(7) = c 
s 

f;(Qi) d.y (22) 
,=I 6? 

and the conservation of energy in the fluid gives an 
expression for the change of the interior temperature 
due to heat loss out through the combined solidi- 
fication/melting system 

d&n 
-I- 

@::, __= 
dr 

--~ (24) 

where 

Key assumptions in using equation (24) to describe 

the changing reservoir temperature arc that the value 
of Ir and (i arc not time dependent and that the 
appropriate values can be predicted. Note that in 
using equation (24) we are prescribing the heat transfer 
systematics of the fluid reservoir, via equation (20) 
and so are introducing a degree of freedom that does 
not exist in real systems undergoing natural convec- 
tion. This is not a trivial point and some controversy 
exists as to the length scales in solidifying, convecting 
fluids surrounded by a conducting medium; this is 
discussed at some length in refs. [ 16, 251. 

Consideration of the dynamics of the mush itself, 
which may be prone to Rayleigh-Taylor or other 
types of instabilities as a function of geometry and 
crystal content, is beyond the scope of this treatment. 
It has been considered recently by refs. [l&49]. These 
types of instabilities may ultimately prove to be impor- 
tant in the heat and mass transfer of magma bodies 
and represents a rich field of potential research in the 
dynamics of multi-phase flow. 

3. NUMERICAL RESULTS 

The system of coupled initial value ordinary differ- 
ential equations that follows from equations (14) and 
(24) was solved numerically using the LSODE algor- 
ithm developed at Lawrence Livermore National 
Laboratory and available for general distribution [SO]. 
The formulation was tested by solving the problem of 
single component solidification cooled by an infinite 
medium, for which the analytical solution is well 
known. The numerical results agreed to within 99.5% 
of the analytical solution for the position of the solidi- 
fication front and the interface temperature. The 
singularities in flux that occur at time equal to zero -I- 
were accommodated by prescribing a small initial dis- 
tribution of the isotherms as given by the analytical 
solution obtained in the absence of convection. 
Numerical exper~mcnts revealed that the final results 
were insensitive to these initial offsets. 

Due to the large number of thermophysical param- 
eters and the variety of solid fraction distributions 
(Fig. 2) it is difficult to generalize the results, a point 
well made in ref. [17]. In an effort to identify the 
generic aspects of the system shown in Fig. I. we 
will consider systems where all the the~ophysical 
properties are the same and have linear solid fraction 
distributions. The solid fraction distribution for the 
country rock and melt are respectively 

j&&T*) = 1.0-2.OT* 0 ,< T* d 0.5 

"f&(T*) = X33(1 -T*) 0.7 < T" ,< 1.0 

(26) 

where 

T* = T-TCRS 

Glo - Tcxs * 
(27) 

For the simulations detailed beiow, the global Stefan 
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number, equation (9), is 2 and the ratio of the differ- 
ence between TCR and TcL, and T,,,, is 100. More 
complex cases will be the subject of future com- 
munications. 

3.1. Open system calculations 
The open system results detailed below are appro- 

priate for conditions where the enthalpy content of 
the fluid reservoir is essentially infinite and hence the 
thermal flux at the edge of the mushy zone is not time 
dependent : Q(r) = Q,,. This might occur during pipe 
flow or in enclosures where some of the bounding 
surfaces are constantly heated. Thus the conjugate 
solidification/melting system is the coupling of two 
semi-infinite reservoirs and the thermal wave travel- 
ling outward from the melt will not reverse direction, 
nor is a true steady state possible. 

The evolution of the coupled solidification/melting 
system can be appreciated by examining the position 
of the solidus on both the melt and country rock sides 
and the position of the convective liquidus in the 
solidifying region. The dimensionless thickness of the 
ith region is given by 

Ai = k, ( TcL - TCR) 

Figure 3 illustrates the temporal evolution of the 
regions of solid and mush where As is the position of 
the solidus, AcL the position of the edge of the mush 
as defined by the convective liquidus, and ACRs the 
position of the solidus in the country rock. The multi- 
component system yields the same type of time depen- 
dence reported elsewhere for single component sys- 
tems : early solidification followed by a retreat of the 
isotherms as the heat carrying capacity of the cold 
thermal reservoir is diminished in the face of a con- 
stant thermal loading, Q,,. One important difference 
is that some solid remains as the convective liquidus 
isotherm is almost stationary throughout much of the 

0.0 0.2 0.4 0.6 0.6 

z 

FIG. 3. Positions of the solidus in the initially molten region. 
country rock and the position of the convective liquidus, 

open system case, equation (28). 

-0.4 1 I 
0.0 0.2 0.4 0.6 

z 

FIG. 4. Normalized differences between the computed posi- 
tions of the solidus in the initially molten region, the country 
rock and the convective liquidus for the multicomponent vs 

the single component case, equation (29). 

interval when the solidus isotherm is retreating. The 
position of the solidus in the country rock moves 
outward monotonically. Although the numerical 
results are shown only for the time period where the 
solidus isotherm cycles back to the contact, ultimately 
the contact temperature will reach the free stream 
temperature, T,,,O, if the thermal conductivities are the 
same. 

One measure of the difference between single and 
multicomponent systems is the difference between iso- 
therms normalized to the multicomponent position. 
This difference Di is defined as 

(29 

where a value of zero indicates that the two systems 
give the same results and a value of one that the 
multicomponent case differs substantially from the 
single component case. For the parameter range con- 
sidered, the multicomponent case differs notably from 
the single component case as shown in Fig. 4. This is 
attributable to the fact that having a multicomponent 
system is equivalent to an increased effective heat 
capacity. 

The ratio of the thermal flux at the contact in the 
presence of convection to that of conduction yields an 
effective Nusselt number. This is plotted in Fig. 5. The 
maximum attainable value of this ratio is two [16] 
as conduction in the country rock provides the rate 
limiting step. Although the heat flux at the contact 
is decreasing with time, the ratio of convective to 
conductive heat transfer is increasing in the time 
period over which the solidus isotherm cycles back to 
the contact. 

3.2. Closed system calculations 
The closed system calculations have a more com- 

plex time dependence than the open system case, as it 
is the coupling of a finite melt reservoir with a semi- 



540 G. W. BEKGANTZ 

1.3 

Nue, 
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1.1 

i.a 
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7 

FIG. 5. Effective Nusselt number: ratio of thermal Aux at the 
contact with convection to that where the melt reservoir is 

cooling by conduction only. 

infinite expanse of country rock. The thermal wave 
will pass out from the melt body and then undergo 
reversal as the cold reservoir temperature, TCR, ulti- 
mately recovers to a steady state. We consider only 
that portion of the thermal history when the melting 
front is still propagating outward into the country 
rock. 

Depending on the value of 4 (and hence I), two 
scenarios are possible: for small values of /;, the 
progress of solidification is monotonic. This is shown 
in Fig. 6 as given by the position of the melt 
solidus As, convective liquidus AcL and country rock 
solidus A,,. The convection in the melt decays before 
the cold thermal reservoir becomes thermally 
swamped and so there is no back melting from thermal 
loading as in the open system case. The dimensionless 
contact temperature and melt reservoir temperature 
are shown in Fig. 7. The contact temperature 
decreases continuously even while convection is 
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FIG. 6. Positions of the solidus in the initially molten region, 
country rock and the position of the convective liquidus, 

closed system case, equation (28). I- = 0.88. 
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FIG. 7. Dimensionless temperature of the closed system melt 
reservoir and the dimensionless contact temperature, equa- 

tions (21) and (17). T = 0.88. 

occurring. The tem~rature difference between the 
melt reservoir and the convective iiquidus falls off to 
l/e of the original difference at a dimensionless time 
of -0.25. 

For a larger value of h the progress of solidification 
undergoes an oscillation like that seen in the open 
system case. The convective thermal flux from the 
decay of the temperature difference between T,,,, and 
r,, is sufficient to initiate melting back as before, but 
stops before the solidus isotherm retreats back to the 
original contact, this is shown in Fig. 8. If convection 
is either more vigorous or the initial enthalpy content 
larger, the sohdus may well retreat all the way back 
to the contact. Similar behavior has been found in the 
solidification of a single component melt cooled from 
above with internal heat generation [51], where the 
oscillations are sustained by the ongoing generation 
of internal heat. Only one oscillation is possible in the 
coupled solidifi~ation/melting system as the enthalpy 
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FIG. 8. Position of the solidus isotherm, closed system, 
1- = 0.68. 
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content of the melt reservoir decays monotonically 
(Fig. 8). 

4. CONCLUSIONS 

Among the most important differences between 
single and multicomponent systems is the rheological 
partitioning that occurs during solidification or melt- 
ing [19]. Changes in solid fraction yield concomitant 
changes in rheology which in turn dictates the driving 
temperature differences for thermal convection, and 
the time scales and manner in which convective struc- 
tures are organized. This is particularly critical in geo- 
logical materials where large changes in melt fraction 
can occur over relatively small temperature differences 
(Fig. 2). The method of weighted residuals provides 
a ready means of modeling such diverse behavior as 
the domain can be subdivided such that the solid 
fraction can be written as a continuous function across 
a subdomain ; jump conditions can be accommodated 
by matching at the domain boundary [39]. Such an 
approach has been adapted to the problem of coupled 
solidification and melting in the presence of thermal 
convection. 

The distribution of solids in the multicomponent 
system differs substantially from the single component 
system (Fig. 4); this will influence both the rate of 
heat transfer and the time scales of macrosegregation. 
The thermal flux from convection can induce a cycle 
of melting back in the solidified portion, the time 
scales associated with this melting back will depend on 
the value of the convective liquidus, the heat transfer 
coefficient and the enthalpy content of the melt body 
for the closed system case. An effective Nusselt 
number, defined as the ratio of the thermal flux at 
the contact in the presence of convection to that of 
conduction shows a simple time dependence and a 
maximum of N 1.35. 

This contribution presents some of the generic time- 
dependent behavior of a coupled solidification/ 
melting system for a single parameter set. It is to be 
expected that variations in the physical properties will 
yield a stretching of the curves given in Figs. 3-8, 
however the basic morphology of the solutions to 
equations (5)-(25) will be the same. More complex 
systems are currently the subject of experimental and 
numerical analysis. 
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SOLIDIFICATION ET FUSION CONJUGUEE DANS DES SYSTEMES OUVERTS OU 
FERMES A PLUSIEURS COMPOSANTS 

R&m&-A la base des technologies de changement de phase et des materiaux gbologiques, on consid&e 
la solidification et la fusion variables de materiaux multicomposants B une dimension avec convection 
thermique ouverte our fermke. La mise en &chelle de la diffkrence de temptrature motrice pour la convection 
est fonction de la diffkrence de temptrature entre l’isotherme qui dilimite une purke rigide d’une boue et 
la tempkrature de l’&coulement libre. L’Cvolution temporelle des zones solides et pun% pour le cas due 
syst&me ouvert multicomposant est qualitativement similaire au cas d’un composant unique. Les flux 
thermiques maximums sont jusqu’8 1,35 fois ceux pour solidification/fusion conductives couplbs. Le cas 
du systtme convectif fermi conduit g deux possibilitts : une progression monotone de la solidification ou 
une oscillation dans les positions des isothermes dtpendantes du rapport du coefficient de transfert 

thermique au contenu enthalpique et de la geomttrie du rtservoir du fluide. 

GEKOPPELTE ERSTARRUNGS- UND SCHMELZVORGANGE IN OFFENEN UND 
GESCHLOSSENEN MEHRKOMPONENTENSYSTEMEN 

Zusammenfassoog-Angeregt durch Technologien mit Phasenwechsel bei geologischen Materialien werden 
die zeitabhgngigen gekoppelten Erstarrungs- und Schmelzvorgiinge von Mehrkomponentensystemen 
betrachtet. Die eindimensionale Betrachtung umfaDt offene und geschlossene Systeme mit thermisch 
bedingter Konvektion. Die GriiDe der treibenden Temperaturdifferenz fiir die Konvektion ist eine 
Funktion der Temperaturdifferenz zwischen der Isothermen, welche die feste breiige Zone von der 
fliissigen breiigen abgrenzt, und der Temperatur der freien StrBmung. Die zeitliche Bildung von festen 
und breiigen Zonen ist fiir ein offenes Mehrkomponentensystem qualitativ sehr lhnlich zu einem Einkom- 
ponentensystem. Der maximal iibertragene WBrmestrom ist etwa 1,35-ma1 so groJ3 wie beim gekoppelten 
Erstarrungs- und Schmelzvorgang mit Wiirmeleitung. Der Fall des geschlossenen konvektiven Systems 
besitzt zwei mBgliche Zustinde: ein gleichmIiI3iges Fortschreiten des Erstarrungsvorgangs oder eine 
Oszillation der Isothermenpositionen, abhiingig vom Verhlltnis des Wiirmeiibergangskoeffizienten zur 

Enthalpie und Geometric des Fliissigkeitsgebiets. 
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COI-IPSI~EHHbIE I-IPOIJECCbI I-IEPEHOCA I-IPkI 3ATBEPAEBAHMM I+ I-IJIABJIEHWI-i B 
MHOI-OKOMIlOHEHTHbIX OTKPbITbIX kI 3AMKHYTbIX CWCTEMAX 

*asam---PacchioTpeHbt m2cramioHapiible conpaxeiwbxe npouecc~ B reononiwcnix bfarepnanax 

IIpH HaJIH’iHA +aaSOBblX UepeXOjlOB (3aTBepJleBatMK H ILllaBJIeHrin) H TeILllOBOti KOHBeKIWH B OTKpblTblX H 

3aMKHyTbrx cHcTeMa.x. %peneneHHe MacurraBa PB~HOCTH TeMnepaTyp, o6ycnoamrsluoIsefi roe~enxwo, 

3aBHCHT OT pa3HOCTH TebInepaTyp Me;lury li313oTepMOti, pa3l-paHEWBaIOtlIefi 06~1amr XWTXOrO llOpHC- 
TOrO COCTOIiHHR H COCTOKHHR CyClTeH3Bli, H CBO6OJIHbLM IIOTOEOM. B CJlyWe MHOrOKOMIIOHeHTHOii 

He3aMKHyTOii CHCTehfbl BptSMeHHaK JBOIOIIHR TBepLIOii H IIOpHCTOii 30H KaSeCTBeHHO CXOJIHa C OJlHOLOM- 

nOHeHTHbIM CJIyqaeM. Marc HbtanbHue CKopocTH TellJlouepeHoCa B 1,35 pa3 Bbuue, seh4 IIPH npoueccax 
KOWyKTHBHOTO 3aTBCpJ.WBaHHK H MaB.ileHH,L &IK 3aMKHyTOfi CHCTeMb, IIPH HZi.JlH¶IiR LOHJSKl@iH BO3- 

MOxHbl nBa pe3yJlbTaTa: MOHOTOHHOe pa3BHTHe SaTBepAe- SiJlE KOJdaHIie paCllOJIOXCeHUii 

Si3OTepM B 3aBHCHMOCTH OT OTHOIUeHHII L03#GilUieHTa TeMOUepeHOGl K TelUlOCOAepXCaHHlO H OT I-‘eO- 


