MELT STABILITY AND COMPACTION IN A PARTIALLY MOLTEN SILICATE LAYER HEATED FROM BELOW

R. P. LOWELL

SCHOOL OF GEOPHYSICAL SCIENCES, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GEORGIA 30332

G. BERGANTZ *

DEPARTMENT OF GEOLOGY AND GEOPHYSICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112

ABSTRACT

In this paper, the possibility of convective or Rayleigh-Taylor instability in a growing layer of partially molten material, heated from below, is investigated. The relative importance of matrix compaction and thermal conduction on the dynamics of the partially molten layer is also studied by a scaling analysis of the appropriate dimensionless equations. The analysis shows that, for low viscosity melts, thermal conduction is unimportant; and melt dynamics is controlled by a combination of matrix compaction and buoyantly-driven instabilities within the melt itself. Once these instabilities occur, melt migration becomes a two- or three-dimensional process, and the chemical composition of the melt that leaves the source zone represents a mixture of melts produced at different temperature-pressure regimes in the source area. In melts with high viscosity, thermal conduction dominates the thermal regimes. Compaction and shear deformation of the matrix must both act to segregate the melt from the matrix. The melt is stable with respect to thermal or compositional convection until a large quantity of liquid has coalesced.

1. INTRODUCTION

When a rock composed of silicate minerals begins to melt, either as a result of pressure release melting as in an ascending diapir, or as a result of heating a stationary layer from below, the melt fraction tends to concentrate along grain boundaries. An interconnected network of melt channels develops, probably after melt fraction exceeds a few percent [1,2], so that the partially molten system behaves as a permeable medium. The melt plays the role of the pore fluid and the unmelted rock provides the matrix through which the melt flows. The permeability of the partially molten system must be determined from

* Now at: Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218
assumptions regarding the shape of the channels, the grain size, and the porosity. The permeability-porosity relationship is usually expressed in a form similar to the well-known Carmen-Kozeny relationship [3], for want of any direct data.

A mathematical description of the dynamics of partially molten silicate rock as a porous-permeable medium is considerably more difficult than that for fluid-saturated rock such as is encountered in hydrology for several reasons. In the hydrological problem, the rock is under lithostatic pressure, and the fluid is generally under hydrostatic pressure. The rock matrix is considered to be rigid and undeformable; consequently, there is no tendency for the fluid to migrate relative to the rock. In the case of partially molten rock in the earth's interior, however, the rock matrix is assumed to be deformable. Pressure differences between the matrix and melt lead to a deformation of the matrix and migration of the melt relative to the matrix. The deformation of the matrix can be viewed, in some cases, as a simple compaction, and the expulsion of the melt from the matrix is analogous to the process of squeezing water from a sponge. A further complication that arises in the partial melt situation is that, as the melt migrates through the matrix, thermodynamic equilibrium is assumed to be maintained. The assumption of thermodynamic equilibrium implies that local melting or freezing occurs as the melt passes through the matrix, resulting in a transfer of material between the melt and matrix, together with an absorption or release of latent heat. Furthermore, the temperature and/or pressure gradients that occur in the partially molten system give rise to compositional gradients within the melt. The concurrence of temperature and compositional gradients leads to complicated dynamical effects in the melt that may affect the dynamics of melt migration. It is this possible interaction that will be explored semi-quantitatively in this paper.

The dynamics of a partially molten silicate rock as flow in a porous medium has been treated by several investigators [4-12] without regard to the recognition of the natural melt as a multicomponent fluid and that the melt and matrix composition at a given temperature and pressure may be fixed by assuming local thermodynamic equilibrium between the melt and the matrix. Calculations based on such models preclude the possibility of convective instability within the melt itself and, therefore, ignore the possible interaction between the melt migration and the convective instability. Furthermore, the results of these calculations provide little insight into the composition of silicate melts that may accumulate to form shallow magma chambers. Hills et al. [13] develop a formulation that in final form is similar to McKenzie's [7], but they do not carry out any subsequent calculations. Ribe [14] has developed a one-dimensional, steady-state model of melt migration of a two-component diapir that includes the assumption of local thermodynamic equilibrium. He does not consider, however, the possible role of convective instability within the diapir. Finally, J to melt stability of a two-component system heated from below without considering the role of conduction.

In order to study the questions of melt migration and instability, the mass, energy, and momentum for the melt must be preserved in a two-component system. conservation of mass and energy. These systems are used to obtain the matrix as functions of time and position at a point no detailed consideration of the relative importance of melt production and melt compositions. As a starting point we consider a starting point for melt migration in a one-dimensional or non-isobaric non-isothermal system.

2. THE BASIC EQUATIONS

A two-component system is considered. Energy conservation of mass and momentum are considered. The component in the system is

\[\frac{\partial f}{\partial t} + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial t} \right) + \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \right) \]

\[\frac{\partial}{\partial t} \]

where \(f \) is the partial fraction of the melt (f) and the melt and matrix, and \(u \) and \(v \) are the velocities. A complete list of equations is given in Appendix. Equations of will be developed in the following sections.
nells, the grain
porosity relationship
the well-known
direct data.
ics of partially
turated rock such as
ons. In the hydra-
static pressure, and
ure. The rock
orable; conse-
ed to migrate relative
ten rock in the
assumed to be
the matrix and melt
igration of the melt
the matrix can be
ion, and the expul-
sous to the process of
lication that
at, as the melt
ilibrium is
of thermodynamic
fing occurs as
ing in a transfer of
ther with an absorp-
ere, the temperature
ially melt ten
es within the melt.
ial gradients
the melt that may
is this possible
itatively in this
icate rock as flow in-
al melt and the
atural melt as a
 matrix composition
 fixed by assuming
 the melt itself and,
 between the melt.
Furthermore, the
insight into the
ulate to form
Kenzie's [7], but they
ions. Ribe [14] has
model of melt migra-
 the assumption of
 not consider, how-
ability within the
diapir. Finally, Lowell [15] has considered the problem of
melt stability of a two-component silicate partial melt in a
layer heated from below and in a one-dimensional diapir, but
without considering the role of melt migration.

In order to study the combined processes of melt migration
and instability, the basic equations of conservation of mass
and momentum for the melt and the matrix are written, assuming
a two-component silicate system, and an equation for conserva-
tion of energy. Phase diagrams for relatively simple silicate
systems are used to deduce the composition of the melt and
matrix as functions of temperature and pressure. The analysis
will focus on the melt migration and instability that may
develop in a partially molten layer that grows in time as it is
heated from below. With some modification, the analysis may be
applied to an ascending, partially molten diapir. At this
point no detailed calculations will be carried out. Rather the
relative importance of compaction and melt instability during
melt production and migration will be identified for a range of
melt compositions. The analysis given here will thus serve as
a starting point for more detailed mathematical modeling of
melt migration in the earth's interior when the non-isothermal
or non-isobaric nature of melt production is considered.

2. THE BASIC EQUATIONS

A two-component system and the appropriate equations for
conservation of mass and momentum in the melt and in the matrix
are considered. The equations of conservation of mass for each
component in the melt and matrix according to Ribe [14] are:

\[
\frac{\partial}{\partial t} (\phi \rho_f x_f) + \frac{\partial}{\partial x} (\phi \rho_f x_f u_f) = r_1
\] \hspace{1cm} (2.1)

\[
\frac{\partial}{\partial t} (\phi \rho_f (1-x_f)) + \frac{\partial}{\partial x} (\phi \rho_f (1-x_f) u_f) = r_2
\] \hspace{1cm} (2.2)

\[
\frac{\partial}{\partial t} ((1-\phi) \rho_s x_s) + \frac{\partial}{\partial x} ((1-\phi) \rho_s x_s u_s) = -r_1
\] \hspace{1cm} (2.3)

\[
\frac{\partial}{\partial t} ((1-\phi) \rho_s (1-x_s)) + \frac{\partial}{\partial x} ((1-\phi) \rho_s (1-x_s) u_s) = -r_2
\] \hspace{1cm} (2.4)

where \(\phi \) is the porosity (or volume fraction of melt), \(\rho_f \) and \(\rho_s \)
are the melt (f) and matrix (s) density, \(x_f \) and \(x_s \) are the mass
fractions of one component (e.g., the "light component") in
the melt and matrix, \(r_1 \) and \(r_2 \) are the rates at which components 1
and 2 are transferred from the melt to the matrix, and \(u_f \) and
\(u_s \) are the velocities of the melt and matrix, respectively.
A complete list of symbols used in this paper are given in the
Appendix. Equations (2.1) through (2.4) are analogous to those
of McKenzie [7] for a one-component fluid. Addition of (2.1)
through (2.4) yields the expression for conservation of mass in Hills et al. [13]. The equations for conservation of momentum in the melt and matrix are, respectively [7]:

$$0 = -\frac{\partial P}{\partial x_1} - (\eta_f + K)(u_1 - U_1) - \rho_f g \delta_{i3}$$

(2.5)

$$0 = -(1-\phi) \frac{\partial P}{\partial x_1} + (\eta_f + K)(u_1 - U_1) - (1-\phi) \rho_s g \delta_{i3} + \frac{\partial}{\partial x_j} (1-\phi) \sigma'_{ij}$$

(2.6)

where

$$(1-\phi) \sigma'_{ij} = \eta_s \left(\frac{\partial u_1}{\partial x_j} + \frac{\partial u_j}{\partial x_1} - \frac{2}{3} \delta_{ij} \frac{\partial u_1}{\partial x_1} \right) + \zeta_s \delta_{ij} \frac{\partial u_1}{\partial x_1}$$

(2.7)

In (2.5), (2.6), and (2.7), P is the pressure, \(\eta_s\) the shear viscosity, K the permeability, \(\zeta_s\) the bulk viscosity, and g the acceleration due to gravity, respectively.

One assumes that the melt and matrix are in local thermal equilibrium and thus that at a point P have the same temperature T. Upon neglecting internal heat production and heating due to stresses, the energy equation can be written, again following McKenzie [7]:

$$((1-\phi) \rho_s c_p^s + \phi \rho_f c_p^f) \frac{\partial T}{\partial t} = \nabla \cdot \left(\left(1-\phi \right) \alpha_s \nabla T - \phi \alpha_f \frac{\partial P}{\partial x_1} \right)$$

$$+ (1-\phi) \rho_s c_p^s \frac{\partial u_1}{\partial x_1} \left(\frac{\partial T}{\partial x_1} - \frac{T_{\alpha_s}}{\rho_s c_p^s} \frac{\partial P}{\partial x_1} \right) + \phi \rho_f c_p^f u_1 \left(\frac{\partial T}{\partial x_1} - \frac{T_{\alpha_f}}{\rho_f c_p^f} \frac{\partial P}{\partial x_1} \right)$$

$$= \frac{\partial}{\partial x_1} \left(\kappa \frac{\partial T}{\partial x_1} \right) - L(\Gamma_1 + \Gamma_2).$$

(2.8)

In equation (2.8), \(c_p\) is the specific heat at constant pressure, \(\alpha\) is the coefficient of thermal expansion, \(\kappa\) is the thermal conductivity of the melt-matrix mixture, and L is the latent heat of fusion. There are several expressions for the thermal conductivity of a solid-liquid mixture (e.g., see Roy et al. [16]). A rather commonly used expression is the weighted geometric mean \(\kappa = \kappa_s (1-\phi) \kappa_f \phi\). For want of data, it will be assumed that \(\kappa\) is a constant. The latent heat of fusion for a binary system is a function of temperature. L = T\(\Delta S\), where \(\Delta S\) is the entropy change of melting. It is generally assumed that \(\Delta S\) is constant so that L \(\propto T\). T \(\sim 8000^\circ C\) for silicic melts and \(\sim 1200^\circ C\) for mafic melts, and the temperature interval \(\Delta T\) over which melting occurs is \(\sim 100^\circ C\) for silicic melts and perhaps

\(~200^\circ C\) for mafic melts over the melting range. Upon the analysis, L \(\equiv\) (2.1) through (2.8) becomes

the variables \(u_1, U_1, T, P, \phi\) and \(\kappa\). Thus, there are still a system. These are

and conditions exp

The equations' (2.1) diagrams.

3. A ONE-DIMENSIONAL

Equations (2.1) are balanceably by considering a horizontal layer of magma model is used main small compaction model. Physically, such \(\phi\) is for the generation of magma migration through the to the layer. Be

gated by Lowell [10] of magma migration, be migration vis-

ions and transpor

Consider the problem is similar to the ignored energy transfer assumed the layer remained an initially stagnated. At time \(T = T^*\) (where \(T^*\) is a molten layer begin system is assumed. The situation is not at the to the side of the the other side of the analogous fashion. (i.e., \(\rho_f = \rho_s\) and momentum equation) variables are inv
ervation of mass in
ervation of momentum

$$\rho_f \delta \gamma_{ij}$$

(2.5)

$$\psi \sigma'_{ij}$$

(2.6)

$$\frac{3u_i}{\delta x_i} + \tau_{s} \delta \gamma_{ij} \frac{3x_j}{\delta x_i}$$. (2.7)

 assure, η_s the shear viscosity, and g the

In local thermal
same tempera-
duction and heating
written, again

$$\frac{\partial P}{\partial t}$$

$$\frac{\partial T}{\partial x_i} - \frac{\rho_f}{\rho_c \rho_{T}} \frac{\partial P}{\partial x_i}$$

(2.8)

$$\delta 1 + \delta 2$$. (2.8)

at constant pres-
ture, and L is the

storsion is the weighted
be heat of fusion for a
L = T_s, where ΔT
rene interval ΔT over
melts and perhaps

~200°C for mafic melts. Thus L would increase by roughly 20% over the melting range. Such a variation is considered small when one considers the uncertainty in the other parameters. In the analysis, L will be assumed to be a constant. Equations (2.1) through (2.8) represent eleven equations for the fifteen variables u_i, U_i (i=1,2,3), P, T, ρ_f, ρ_s, ϕ, x_s, x_f, P_1, T_2. Thus, there are still four equations necessary to specify the system. These are equations of state for ρ_s and ρ_f of the form

$$\rho_s (P,T,x_s) = \rho_f (P,T,x_f) = 0$$ (2.9)

and conditions expressing local thermodynamic equilibrium

$$x_f = x_f (P,T)$$

(2.10)

$$x_s = x_s (P,T)$$

The equations (2.10) are determined from the pertinent phase diagrams.

3. A ONE-DIMENSIONAL MODEL--LAYER HEATED FROM BELOW

Equations (2.1) through (2.10) can be simplified considerably by considering one-dimensional models. The situation of a horizontal layer of rock heated from below is considered. This model is used mainly for the purpose of comparison with the compaction model of McKenzie [7] and Richter and McKenzie [8]. Physically, such a model might serve as a first approximation for the generation of high-silica melts formed in the earth's crust following the emplacement of more basic melts subjacent to the layer. Because the stability problem has been investigated by Lowell [15] for basaltic melts without consideration of magma migration, the focus of the ensuing development will be migration vis-a-vis instability. A range of melt compositions and transport properties will be considered.

Consider the one-dimensional transient problem. This problem is similar to that in Richter and McKenzie [8], except they ignored energy transport and phase equilibrium, and they assumed the layer thickness was fixed. In the current development an initially solid layer at the eutectic temperature T_e is assumed. At time $t = 0$ the base of the layer is raised to $T = T^*$ (where T^* is less than the liquidus). A partially molten layer begins to grow. For simplicity a perfect binary system is assumed. It will be assumed that the bulk composition is not at the eutectic, and that the bulk composition lies to the side of the eutectic such that $x_s = 0$. The analysis for the other side of the phase diagram ($x_f = 0$) would proceed in analogous fashion. Moreover, the Boussinesq approximation (i.e., $\rho_f = \rho_s$ everywhere except in the buoyancy terms in the momentum equation) is made. Then the following non-dimensional variables are invoked:
\[\phi' = \phi / \phi_0 ; \quad \phi_0 = \text{constant, the partial melt fraction at the phase change boundary} \tag{3.1} \]

\[K' = K / K_0 ; \quad K_0 = \phi_0^n \xi^2 / d, \tag{3.2} \]

\[t' = t / t; \quad \tau = \psi_0^*/w_0 \tag{3.5} \]

\[T' = (T - T_e) / (T^* - T_e) \tag{3.6} \]

Upon substitution of (3.1) through (3.6) into (2.1) through (2.8) and making simplifications similar to Richter and McKenzie [8], one obtains:

\[\frac{\partial \Phi}{\partial t} - \frac{1}{\partial x} (1 - \Phi_0 \phi) W T = 0 \tag{3.7} \]

\[\frac{d^2 \Phi}{dz^2} = \frac{1}{W / K} \left(\frac{1 - \Phi_0 \phi}{1 - \Phi_0 \phi} \right) \tag{3.8} \]

\[\frac{\partial \Phi}{\partial t} = (\tau a / \delta^2) \frac{\partial^2 \Phi}{\partial z^2} + S(- \partial \Phi / \partial t + \frac{1}{\partial x} (1 - \Phi_0 \phi) W) \tag{3.9} \]

\[W = \frac{1 - \Phi_0 \phi}{\Phi_0 \phi} \tag{3.10} \]

\[K = \Phi^n \tag{3.11} \]

where, for convenience, the primes have been dropped from the dimensionless variables. In equation (3.7) a phase relationship of the form \(\chi_F = \Phi T \) is incorporated, where \(b \) is a constant. In (19) it is assumed that \(c_F = c_p = c_p, a = \kappa / \rho c_p, \) and \(\gamma = L \Phi_0 / \Delta T c_p. \) Equations (3.8), (3.10), and (3.11) are identical to corresponding equations of Richter and McKenzie [8]. Equation (3.9) is the energy equation that is neglected in Richter and McKenzie's [8] treatment; and (3.7) is analogous to their conservation of mass equation, except in the present analysis the mass fraction of the light component is not conserved explicitly. Because the light component \(\chi_F \) is related to the temperature through the requirement of thermodynamic equilibrium, equations (3.7) through (3.10) represent four equations in four unknowns, \(\phi, W, W, T. \) The parameter \(b \) relating the mass fraction of the melt and the temperature through the equilibrium does not appear in (3.7) because the reason is that (3.7) is broken into the transfer during the process is driven by the melt and the crystallizing component is assumed to be constant. In any transitions in the density distribution of the melt itself, these transitions would occur at critical temperatures. The perturbed density equation is of critical importance and is solved subject to the

\[w = W = w_0 \tag{3.12} \]

and initial conditions:

\[\partial W / \partial t = 0 \]

where \(h(t) \) is the boundary condition at \(t. \) This boundary condition is the zero flux.

Equations (3.7) through (3.19) describe the problem of magma migration in a growing magma chamber from below, in which case the order state, perturbations, and melt can be solved as a nontrivial case. The magma migration and thermal regime can be described by scale variables \(W_0, \delta, \tau, \) and \(\Delta T / \delta \).
initial melt

(3.1)

boundary

(3.2)

constant

(3.3)

\(-\phi \Delta \rho g\)

(3.4)

\(-1/2\)

(3.5)

into (2.1) through

(3.6)

Richter and

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

and initial conditions;

(3.12)

(3.13)

(3.14)

(3.15)

where h(t) is the location of the partial melt boundary at time t. This boundary is determined by the equation:

\(\kappa \frac{\partial T}{\partial z} = \phi L \frac{dh}{dt}\)

(3.19)

Equations (3.7) through (3.11) with conditions (3.12) through (3.19) define, mathematically, the problem of melt migration in a growing layer of a binary partial melt, heated from below, in which thermodynamic equilibrium is maintained. The solutions to these equations would represent the zeroth order state, perturbations of which could lead to instabilities within the melt itself. Solutions to even the zeroth order state can be solved only numerically, except in the most trivial cases. Considerable insight into the importance of magma migration and matrix deformation on the zeroth order thermal regime can be gained, however, simply by examining the scale variables \(W_0, \delta, \tau\) as a function of \(K_0, \eta_g\), by examining the dimensionless thermal conduction scale \(aT/\delta^2\), and by comparing \(h\) to \(\delta\) as a function of \(\tau\). The latter comparison depends upon the parameter \(S\). For typical values \(L = 10^5\) j/kg,

\(\Delta T = 100^\circ\mathrm{C}, \quad C_p = 10^3\) j/kg/\(\circ\mathrm{C}, \quad \phi = 0.1, \quad S = 0.1\). Table 1 shows \(W_0, \delta, \tau,\) and \(aT/\delta^2\) for a range of values \(K_0, \eta_g\). Table 1 also
TABLE 1. Material Properties and Scale Variables as Functions of K_0 and η_f.

(a) Material Properties and Constants:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_0</td>
<td>0.1</td>
</tr>
<tr>
<td>g</td>
<td>10 m/s2 s2</td>
</tr>
<tr>
<td>d</td>
<td>103</td>
</tr>
<tr>
<td>$\tau_s + 4/3 \eta_s$</td>
<td>10^{18} Pa-s</td>
</tr>
<tr>
<td>$\Delta\rho$</td>
<td>500 kg/m3</td>
</tr>
<tr>
<td>a</td>
<td>10^{-6} m2/s</td>
</tr>
</tbody>
</table>

(b) Scale Variables:

<table>
<thead>
<tr>
<th>η_f (Pa-s)</th>
<th>W_0 (m/s)</th>
<th>δ (m)</th>
<th>τ (s)</th>
<th>$\alpha\tau/\delta^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1</td>
<td>5×10^{-6}</td>
<td>3×10^3</td>
<td>6×10^7</td>
<td>6×10^{-6}</td>
</tr>
<tr>
<td>10^2</td>
<td>5×10^{-7}</td>
<td>10^3</td>
<td>2×10^8</td>
<td>2×10^{-4}</td>
</tr>
<tr>
<td>10^4</td>
<td>5×10^{-9}</td>
<td>10^2</td>
<td>2×10^9</td>
<td>0.2</td>
</tr>
<tr>
<td>10^8</td>
<td>5×10^{-13}</td>
<td>1</td>
<td>2×10^{11}</td>
<td>2×10^5</td>
</tr>
</tbody>
</table>

$K_0 = 10^{-10}$ m2 ($t = 10^{-2}$ m)

$K_0 = 10^{-12}$ m2 ($t = 10^{-3}$ m)

4. DISCUSSION

To fix the discussion, the ternary represent low viscosity plagioclase phase di melts are considered great oversimplified of granitic melts, but of the density behavior. The perturbation and 2, respectively, calculated for Fig. following discussion is the ternary phase diagram does not present ser physics of the process.

4.1. Compaction-dominated

Consider first the $\eta_f = 10^1$ Pa-s, $K_0 = (3.9)$ reveals that t compared to the compaction layer. The heat transfer will modify the moti conductive (Stefan) that this can be neg boundary is given, a

h where the factor $h = 1$. Thus, in a unit of $t = 1$, $h \approx 35$ m or 10^{-2}. But if $t = 10$ but e^{-1} of the melt is a constant initial pressure from that considered nevertheless their liquid-like layer of A further complication is a partially molten layer is unstable.

Consider the bulk For bulk composition, under equilibrium melting of a until all the heating, diopside is melt. Thus, in a layer below, the density occurs rapidly comp however, and a rela
4. DISCUSSION

To fix the discussion in terms of simple silicate phase diagrams, the ternary diopside-plagioclase phase diagram to represent low viscosity basic melts and the ternary quartz-plagioclase phase diagram to represent high viscosity silicic melts are considered. These phase diagrams are admittedly great oversimplifications of naturally occurring basaltic or granitic melts, but they do serve to show the important aspects of the density behavior as functions of composition and temperature. The pertinent phase diagrams are shown in Figs. 1 and 2, respectively. Note the effect of water on the densities calculated for Fig. 2 has been neglected. Because the following discussion is largely qualitative, the interpretation of the ternary phase diagrams in terms of two-component systems does not present serious obstacles to understanding the basic physics of the processes being considered.

4.1. Compaction-dominated systems

Consider first the compaction-dominated system given by \(\eta_0 = 10^5 \) Pa·s, \(K_0 = 10^{-10} \) m\(^2\) in Table 1. An examination of (3.9) reveals that the thermal conduction term is negligible compared to the compaction term except in a very thin boundary layer. The heat transport that arises because of compaction will modify the motion of the phase boundary from the ordinary conductive (Stefan) case, but suppose for the sake of argument that this can be neglected. Then the motion of the phase boundary is given, approximately, by Carslaw and Jaeger [20]:

\[h(t) \approx 2(\alpha t/0.2)^{1/2}, \]

(4.1.1)

where the factor (0.2) comes from boundary condition (3.9). Thus, in a unit of time equal to the compaction time \(t \) (i.e., \(t = 1 \)), \(h \approx 35 \) m or \(h/\delta \approx 10^{-2} \). Even if \(t = 10 \), \(h/\delta = 3 \times 10^{-2} \). But if \(t = 10 \), Richter and McKenzie [8] show that all but \(e^{-1} \) of the melt is expelled from the porous layer, assuming a constant initial porosity. Their model is somewhat different from that considered here in that \(h \) is fixed a priori, but nevertheless their results suggest that for the current model a liquid-rich layer of considerable thickness ought to develop. A further complication may arise, however; the melt in the partially molten layer may be convectively or gravitationally unstable.

Consider the bulk compositions labelled a and b in Fig. 1. For bulk composition a, the composition of melts formed, under equilibrium melting, lie along the cotectic to the left of a until all the plagioclase is melted. With additional heating, diopside is the only residual crystalline phase in the melt. Thus, in a layer of bulk composition a, heated from below, the density of the melt increases with increasing temperature, and the melt is gravitationally stable. Compaction occurs rapidly compared to the rate of growth of the layer, however; and a relatively liquid-rich melt layer is likely to
be formed. If this layer forms by simple vertical flow, without mixing, it would have a destabilizing thermal gradient and a strongly stabilizing compositional gradient. The layer would become monotonically unstable to a finite amplitude perturbation when the thermal Rayleigh number for the layer exceeds the critical value of 10^3 [21]. Thus, instability in the melt-rich layer of thickness D would occur, approximately, when:

$$Ra = \frac{\rho g a D^4}{\kappa \eta_f} > 10^3 \quad (4.1.2)$$

With $a = 3 \times 10^{-5}$°C, $\rho = 3 \times 10^3$ kg/m3, $\beta = 0.01$°C/m, and other parameters given by Table 1, one obtains $D \sim 1$ m.

Now consider bulk composition b in the plagioclase field. As in case a, the composition of the first melts formed lie along the cotectic until all of the diopside is melted. The melt composition then moves off the cotectic and into the plagioclase + liquid field (see the arrow in Fig. 1). The melt having a composition on the cotectic is more dense than melt having a composition in the plagioclase + liquid field. Thus, for a layer of bulk composition b that undergoes equilibrium melting and is heated from below so that the temperature at the base is great enough for all the Di to be consumed, the melt at the top of the layer is more dense than melt at the base of the layer. This situation is gravitationally unstable, and one would expect a Rayleigh-Taylor instability to develop.

Admittedly, the Taylor instability and melt compaction are difficult to form rather rapid, to form rather rapid, such a layer would be unstable. The Rayleigh-Taylor instability. In the step [22] for two layers with density contrast $\Delta \rho$:

$$\eta_f = 10 \text{ Pa-s}, \quad \Delta \rho$$

where D is the total layer thickness set equal to the calculations, the partially molten layer could appear to be sensitive to partial layer instabilities. It is very noteworthy that in such thin layers.
temperature constraint [17]. Liquid phase [18]. a and b are solid saturated with the assumed bulk compositions.

vertical flow, with thermal gradient and constant density. The layer would exceed the maximum perturbation when the layer exceeds the stability in the melt.

\[\tau_{\text{R-T}} = \frac{26 \eta_f}{\Delta \rho g D} \]

where \(\Delta \rho \) is the density contrast, \(\eta_f \) is the viscosity, and \(D \) is the total thickness of the melt-rich layer. If \(\tau_{\text{R-T}} \) is set equal to the compaction time \(\tau = 6 \times 10^7 \) s, \(\Delta \rho = 0.005 \), \(\eta_f = 10 \) Pa-s, then \(D \approx 10^{-4} \) m.

Admittedly, the details of the development of a Rayleigh-Taylor instability in a growing, compacting layer of partial melt are difficult to describe even qualitatively. Because compaction is rapid in low viscosity, partially molten systems, a fluid rich, gravitationally unstable layer might be expected to form rather rapidly. It is interesting to see how thick such a layer would need to be for the growth time for the Rayleigh-Taylor instability to exceed the compaction time scale.

In the simple example shown by Turcotte and Schubert [22] for two layers of equal thickness and viscosity, with a density contrast \(\Delta \rho \), the minimum growth time is:

These results, though based on an extremely oversimplified analysis of the stability problem, strongly suggest that low viscosity melts produced in a compacting layer heated from below are likely to be highly unstable. This result does not appear to be sensitive to the starting composition, and though the calculation has been based on the model of a growing partially molten layer, it is difficult to imagine that the instabilities suggested here would not occur in an ascending diapir. It is very noteworthy that the melt instabilities would occur in such thin layers (~meters), because it implies that on the
spatial scales involved in melt production in the mantle, presumably of the order of kilometers to a few tens of kilometers, the instabilities would be extremely vigorous.

At the risk of carrying this simplistic analysis from the boundaries of reason to the realm of pure fantasy, three more possible implications of these results are suggested. First, the occurrence of instabilities in the melt changes the melt segregation problem from a one-dimensional one to a two- or three-dimensional one. One-dimensional models may offer very little insight into the dynamics of melt segregation in the mantle. The two- or three-dimensional nature of the motions in the melt would give rise to lateral changes in the motion of the melt front and locally enhance melt segregation at some places along the melt front. That is, diapirs may form on the melt boundary. Secondly, the melt would be expected to undergo vigorous mixing in the production zone. Major and trace element distributions in the segregated melt may represent compositions that have been averaged over a considerable range of pressure and temperature and not represent a melt batch having a simple eutectic composition. Lastly, because partial melt is continually generated at the top of the growing layer, even as an unstable, melt-rich layer is forming in the interior of the layer, one can see how zones of different melt fraction can be formed. Such a distribution of melt fractions may give rise to magmas [10].

4.2. Conduction-dominated systems

Now consider, for example, the case \(\eta_f = 10^8 \text{ Pa-s}, K_0 = 10^{-12} \text{ m}^2 \) in Table 1. This system corresponds to a fine-grained granite. Clearly, the conduction term in the heat transfer equation (2.9) is much more important than the compaction term. Equation (4.1.1) is an excellent approximation to the growth of the layer. In a unit of compaction time, \(t = 1 \), for this system, \(h \approx 6 \times 10^3 \text{ m} \). Melt migration is negligible compared to the growth of the partially molten layer. The question of melt stability can be addressed as in the preceding section.

Consider as examples the bulk compositions c and d in Fig. 2. The analysis of the density structure in the partial melt is analogous to that in the preceding section. The principal difference, however, is that quartz replaces diopside as the third component of the phase diagram. Because quartz is less dense than plagioclase, whereas diopside is more dense, the density structure is reversed. The partial melt with bulk composition c (i.e., quartz + liquid field), shows a density inversion, whereas a partial melt with bulk composition d is stably stratified. In both of these cases, however, melt instability does not play an important role. Suppose one assumes that a melt-rich layer, equal to the compaction thickness, developed in a unit of compaction time in a liquid with bulk composition c. The growth time for the Rayleigh-Taylor instability in this layer, with the same parameters as used previously in (4.1.3), except \(\eta_f = 10^8 \text{ Pa-s} \) and \(D = \delta \), gives:

which is somewhat smaller than the Rayleigh number in Table 1. Again, even if the instability would occur, the layer dimensions would be significant effects on the layer.

One is then led to question the role of compaction and melt segregation in the dynamics of melt migration. We consider the role of the Mt. Arariboan granite as a case in point. As a first approximation, the resulting melt fraction is 25%, the melt composition is that of the granite, and the melt fraction is 25%. The melt composition is that of the granite. The melt fraction is significant effects on the layer.

5. CONCLUSIONS

The dynamics of melt segregation in the mantle, as well as in the isoviscous melts of low viscosity,
in the mantle, few tens of kilo-
y vigorous.

analysis from the
ancy, three more
 suggested. First,
changes the melt
one to a two- or
els may offer very
gregation in the
re of the motions in
in the motion of
regation at some
s may form on the
expected to undergo
or and trace
t may represent
considerable range
at a melt batch
ly, because partial
the growing layer,
ing in the interior
ent melt fraction
ctions may give

\[10^8 \text{ Pa-s}, K_0 = \text{ds} \text{ to a fine-grained } \text{ the heat transfer } \text{ the compaction term. } \text{ion to the growth of } \frac{h}{l} = 1, \text{ for this } \text{ negligible compared } \text{ed section. } \text{ns } c \text{ and } d \text{ in Fig. } \text{ the partial melt } \text{on. The principal } \text{ds diopside as the } \text{ use quartz is less } \text{ more dense, the } \text{ melt with bulk } \text{, shows a density } \text{ composition } d \text{ is } \text{ however, melt } \text{ Suppose one } \text{ compaction thick- } \text{ time in a liquid with } \text{ Rayleigh-Taylor } \text{ parameters as used } \text{ and } D = \delta, \text{ gives: } \text{ (4.2.1)} \text{ which is somewhat less than the compaction time. But an insta-

ibility that occurred on a scale of } 10^{-1} \text{ m could not be expected } \text{ to be observed. The monotonic, finite-amplitude instability } \text{ for this system (i.e., bulk composition } d), \text{ with the same } \text{ parameters as used previously in (4.1.2), gives } D \approx 5 \text{ m. The } \text{ Rayleigh number is only 0.2 percent of the critical value. } \text{Again, even if the compacting layer were unstable, the insta-

bility would occur on spatial scales that are much less than } \text{ the layer dimension. Such instabilities could not have a } \text{ significant effect on the dynamics of the partially molten } \text{ layer. } \text{ One is then left with the question as to how magma migration
and melt segregation occurs in granite systems, because matrix
compaction and melt instability appear to play such a small } \text{ role in the dynamics of the partially molten system. An answer } \text{ to this may be found, possibly, from the detailed field studies } \text{ of the Mt. Arabia migmamate in Georgia [23]. The Mt. Arabia } \text{ migmamate is an anatetic partial melt in which progressive } \text{ degrees of partial melting may be observed. According to Size
and Covert [23], shear structures are the sites of incipient } \text{ melt films; and when the melt fraction reaches approximately } \text{ 25\%, the melt coalesces into larger braids and arteries as a } \text{ result of shear and matrix deformation. Braids on the order of } \text{ meters in width are observed. The critical features in melt } \text{ segregation in granites may be a combination of a large melt } \text{ fraction (permeability) and shear deformation as well as simple } \text{ compaction. } \text{ From Table 1, one sees that if } K_0 = 10^{-10} \text{ m}^2, \delta = 1 \text{ m, } \tau = 2 \times 10^{11} \text{ s. The factor } a \pi / \delta^2 = 2 \times 10^5, \text{ so the system is still } \text{ dominated by thermal conduction. The compaction length scale, } \text{ which is roughly equivalent to the length scale of melt migra-

tion resulting from shear, is roughly the scale at which melt } \text{ coalescence is observed in the Mt. Arabia migmamate. In } \text{ time of } 2 \times 10^{11} \text{ s, equation (4.1.1) gives a layer thickness of } -2 \times 10^{3} \text{ m, which is not unreasonable. It thus appears to a first } \text{ approximation, that observed features of melt segregation in } \text{ granitic melts can be explained on the basis of the two-phase } \text{ flow model of McKenzie [7], though not on the basis of one-

dimensional compaction alone. Nevertheless, it is interesting } \text{ that the general theory has some credence in field data. At } \text{ present there is no field verification of the McKenzie model } \text{ for basalt melt segregation. } \text{ 5. CONCLUSIONS } \text{ The dynamics of melt segregation is extremely important in } \text{ geology, and appears to be exceptionally complex, particularly } \text{ when one places thermodynamic constraints on the system. One- } \text{ dimensional compaction models are useful for estimating the } \text{ order of magnitude of the effect of matrix deformation. In } \text{ melts of low viscosity, thermal conduction is unimportant, and }
melt dynamics is controlled by a combination of matrix deformation and convective or Rayleigh-Taylor instability within the melt itself. These combined effects will give rise to two- or three-dimensional processes that may tend to focus the locales of melt migration. These processes have not yet been treated quantitatively in any fashion. One would suspect that the chemical signature of the source zone is considerably smeared as a result of melt instability in the production zone. It would be difficult to unravel such factors as degree of partial melting and other source characteristics in any more than an average sense.

On the other hand, in melts with high viscosity, thermal conduction dominates the thermal regime. Compaction and shear deformation act together to segregate the melt from the matrix. The melt is stable with respect to convection until large quantities of liquid have coalesced.

ACKNOWLEDGMENTS

We thank David Loper for organizing the Conference. We also thank Hatten Yoder for his careful review of this manuscript. His comments, together with those of an anonymous reviewer, have led to a much improved paper.

BIBLIOGRAPHY

APPENDIX

List of Symbols

- \(a \) - thermal diffusivity of solid-melt mixture \((a = \kappa/\rho c_p)\)
- \(b \) - a constant relating mass fraction of light component to temperature assuming thermodynamic equilibrium
- \(c_p \) - specific heat at constant pressure
- \(d \) - a constant
- \(D \) - thickness required for melt layer to be unstable
- \(g \) - acceleration due to gravity
- \(h \) - location of the melt boundary
- \(K \) - permeability
- \(l \) - grain size
- \(L \) - latent heat
- \(P \) - pressure
- \(Ra \) - Rayleigh number
- \(S \) - Stefan number \(L/\Delta T_{c_p} \)
- \(T \) - temperature
- \(T^* \) - temperature at base of layer
- \(T_e \) - temperature at top of layer (the eutectic temperature)
- \(u_i \) - velocity components in melt \((i = 1, 2, 3)\)
- \(U_i \) - velocity components in matrix \((i = 1, 2, 3)\)
- \(w \) - vertical velocity of melt
- \(W \) - vertical velocity of matrix

Greek Symbols:
- \(\alpha \) - thermal expansion coefficient
- \(\beta \) - thermal gradient
- \(\Gamma_1, \Gamma_2 \) - rates at which components 1, 2 are transferred from melt to matrix
- \(\delta \) - compaction length (a scaling length)
- \(\zeta \) - bulk viscosity
- \(\eta \) - shear viscosity
- \(\kappa \) - thermal conductivity of melt-matrix mixture
- \(\rho \) - density
- \(\tau \) - compaction time (a scaling time)
- \(\tau_{RT} \) - growth time for Rayleigh-Taylor instability
- \(\phi \) - porosity (volume fraction of melt)
- \(\chi \) - mass fraction of light component of melt

Subscripts:
- \(f \) - fluid
- \(o \) - reference value
- \(s \) - solid

Superscript:
- \(^* \) - dimensionless parameter