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ABSTRACT

In this paper, the possibility of convective or Rayleigh-
Taylor instability in a growing layer of partially molten
material, heated from below, is investigated. The relative
importance of matrix compaction and thermal conductian:on the
dynamics of the partially molten layer is also studied by a
scaling analysis of the appropriate dimensionless equations.
The analysis shows that, for low viscosity melts, thermal
conduction is unimportant; and melt dynamics is controlled by a
combination of matrix compaction and buoyantly-driven insta-
bilities within the melt itself. Once these instabilities
occur, melt migration becomes a two- or three-dimensional pro-
cess, and the chemical composition of the melt that leaves the
source zone represents a mixture of melts produced at different
temperature-pressure regimes in the source area. 1In melts with
high viscosity, thermal conduction dominates the thermal
regimes. Compaction and shear deformation of the matrix must
both act to segregate the melt from the matrix. The melt is
stable with respect to thermal or compositional convection
until a large quantity of liquid has coalesced.

1. INTRODUCTION

When a rock composed of silicate minerals begins to melt,
either as a result of pressure release melting as in an ascen-
ding diapir, or as a result of heating a stationary layer from
below, the melt fraction tends to concentrate along grain boun-
daries. An interconnected network of melt channels develops,
probably after melt fraction exceeds a few percent [1,2], so
that the partially molten system behaves as a permeable medium.
The melt plays the role of the pore fluid and the unmelted rock
provides the matrix through which the melt flows. The permea-
bility of the partially molten system must be determined from
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assumptions regarding the shape of the channels, the grain
size, and the porosity. The permeability-porosity relationship
is usually expressed in a form similar to the well-known

Carmen-Kozeny relationship [3], for want of any direct data.

A mathematical description of the dynamics of partially

molten silicate rock as a porous-permeable medium is consider-

ably more difficult than that for fluid-saturated rock such as
is encountered in hydrology for several reasons. 1In the hydro-
logical problem, the rock is under lithostatic pressure, and
the fluid is generally under hydrostatic pressure. The rock
matrix is considered to be rigid and undeformable; conse-
quently, there is no tendency for the fluid to migrate relative
to the rock. In the case of partially molten rock in the
earth's interior, however, the rock matrix is assumed to be
deformable. Pressure differences between the matrix and melt
lead to a deformation of the matrix and migration of the melt
relative to the matrix. The deformation of the matrix can be
viewed, in some cases, as a simple compaction, and the expul-
sion of the melt from the matrix is analogous to the process of
squeezing water from a sponge. A further complication that
arises in the partial melt situation is that, as the melt
migrates through the matrix, thermodynamic equilibrium is
assumed to be maintained. The assumption of thermodynamic
equilibrium implies that local melting or freezing occurs as
the melt passes through the matrix, resulting in a transfer of
material between the melt and matrix, together with an absorp-
tion or release of latent heat. Furthermore, the temperature
and/or pressure gradients that occur in the partially molten
system give rise to compositional gradients within the melt.
The -concurrence of temperature and compositional gradients
leads to complicated dynamical effects in the melt that may
affect the dynamics of melt migration. It is this possible
interaction that will be explored semi-quantitatively in this
paper. .

The dynamics of a partially molten silicate rock as flow in
a porous medium has been treated by several investigators [4-
128 without regard to the recognition of the natural melt as a
multicomponent fluid and that the melt and matrix composition
at a given temperature and pressure may be fixed by assuming
local thermodynamic equilibrium between the melt and the
matrix. Calculations based on such models preclude the possi-
bility of convective instability within the melt itself and,
therefore, ignore the possible interaction between the melt
migration and the convective instability. Furthermore, the
results of these calculations provide little insight into the
composition of silicate melts that may accumulate to form
shallow magma chambers. Hills et al. [13] develop a formula-
tion that in final form is simiTlar to McKenzie's [7], but they
do not carry out any subsequent calculations. Ribe fl&] has
developed a one-dimensional, steady-state model of melt migra-
tion of a two-component diapir that includes the assumption of
local thermodynamic equilibrium. He does not consider, how-
ever, the possible role of convective instability within the
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diapir. Finally, Lowell {15] has considered the problem of
melt stability of a two-component silicate partial melt in a
layer heated from below and in a one-dimensional diapir, but
without considering the role of melt migration.

In order to study the combined processes of melt migration
and instability, the basic equations of conservation of mass
and momentum for the melt and the matrix are written, assuming
a two-component silicate system, and an equation for conserva-
tion of energy. Phase diagrams for relatively simple silicate
systems are used to deduce the composition of the melt and
matrix as functions of temperature and pressure. The analysis
will focus on the melt migration and instability that may
develop in a partially molten layer that grows in time as it is
heated from below. With some modification, the analysis may be
applied to an ascending, partially molten diapir. At this
point no detailed calculations will be carried out. Rather the
relative importance of compaction and melt instability during
melt production and migration will be identified for a range of
melt compositions. The analysis given here will thus serve as
a starting point for more detailed mathematical modeling of
melt migration in the earth's interior when the non-isothermal
or non-isobaric nature of melt production is considered.

2. THE BASIC EQUATIONS

A two-component system and the appropriate equations for
conservation of mass and momentum in the melt and in the matrix
are considered. The equations of conservation of mass for each
component in the melt and matrix according to Ribe [14] are:

%‘E (¢prf) + '5‘}8(‘; (¢Ofoui) = I'l (2-1)
2 (bogl-xg)) + 531 (bpe(1-xp)uy) = Ty (2.2)
2 ((-9)ogxgy) + ggz ((1-9)ogxUy) = =Ty (2.3)

e (9o (1ox)) + g (=)o (1oxdUp) = =Ty, (2.4)

where ¢ is the porosity (or volume fraction of melt), pf and pg
are the melt (fg and matrix (s) density, xf and xg are the mass
fractions of one component (e.g., the '1ight component') in the
melt and matrix, T7 and T2 are the rates at which components 1
and 2 are transferred from the melt to the matrix, and uj and
U; are the velocities of the melt and matrix, respectively.

A complete list of symbols used in this paper are given in the
Appendix. Equations (2.1) through (2.4) are analogous to those
of McKenzie [7] for a one-component fluid. Addition of (2.1)




geometric mean « =

388

through (2.4) yields the express1on for conservation of mass in
Hills et al. [13]. The equations for conservation of momentum
in the melt and matrix are, respectively [7]:

0= 'BP/BXi - (T\f¢/K)(ui Ui) = pfg65_3 (2-5)

0 = -(1-9) 8B/ox; + (ngh?/K) (uy = U})

(1-8)p 8845 + —33 (1-¢)0f; , (2.6)
where
U, 3U. U 3U
-)g! . = i j_2 % 3
(1 ¢)°ij ng (axj + 7, -3 6 1] %, —=) + P i3 %, . (2.7)

In (2.5), (2.6), and (2.7), P is the pressure, ng the shear
viscosity, K the permeability, ¢g the bulk viscosity, and g the
acceleration due to gravity, respectively.

One assumes that the melt and matrix are in local thermal
equilibrium and thus that at a point P have the same tempera-
ture T. Upon neglecting internal heat production and heating
due to stresses, the energy equation can be written, again
following McKenzie [7]:

((1-¢)pscs + ¢pfc§) 3T/at = T((1—¢)us + pag) 3P/at

P
Tao To
3T _ . 7 7s f 3T _ f 3P
+ (k- 4’)"scpul 3%y, o8 ax ) * Mfc Yi (axi o of axi)
s°p f7p
3 3T _
= a—x—l- (x 7%] ) L(r1 + 1"2) . (2.8)

In equation (2.8), is the specific heat at constant pres-
sure, o is the coefficient of thermal expansion, k is the
thermal conductivity of the melt-matrix mixture, and L is the
latent heat of fusion. There are several expressions for the
thermal conductivity of a solid-liquid mixture (e.g., see Roy
et al. [16]). A rathe c$?mon%y used expression is the weighted
For want of data, it will be

agsumed that k is a constant The latent heat of fusion for a
binary system is a function of temperature. L = TAS, where AS
is the entropy change of melting. It is generally assumed that
AS is constant so that L « T. T ~ 80009C for silicic melts and
~12000°C for mafic melts, and the temperature interval AT over
which melting occurs is ~1000C for silicic melts and perhaps
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~2000C for mafic melts. Thus L would increase by roughly 20%
over the melting range. Such a variation is considered small
when one considers the uncertainty in the other parameters. In
the analysis, L will be assumed to be a constant. Equations
(2.1) through (2.8) represent eleven equations for the fifteen
variables ui, Ui (i=1’2>3)’ Pa T, Pf, Ps> b, Xss Xf» fl, r2'
Thus, there are still four equations necessary to specify the
system. These are equations of state for pg and pg of the form

pS(P’T,XS) = pf(P,T’Xf) = O ‘ (2‘9)
and conditions expressing local thermodynamic equilibrium

Xf = Xf(PaT)
xg (P,T)

(2.10)

I

Xs

The equations (2.10) are determined from the pertinent phase
diagrams.

3. A ONE-DIMENSIONAL MODEL--LAYER HEATED FROM BELOW

Equations (2.1) through (2.10) can be simplified consider-
ably by considering one-dimensional models. The situation of a
horizontal layer of rock heated from below is considered. This
model is used mainly for the purpose of comparison with_the
compaction model of McKenzie F7] and Richter and McKenzie [8].
Physically, such a model might serve as a first approximation
for the generation of high-silica melts formed in the earth's
crust following the emplacement of more basic melts subjacent
to the layer. Because the stability problem has been investi-
gated by Lowell [15] for basaltic melts without consideration
of magma migration, the focus of the ensuing development will
be migration vis-a-vis instability. A range of melt composi-
tions and transport properties will be considered.

Consider the one-dimensional transient problem. This prob-
lem is similar to that in Richter and McKenzie [8], except they
ignored energy transport and phase equilibrium, and they
assumed the layer thickness was fixed. In the current develop-
ment an initially solid layer at the eutectic temperature Te is
assumed. At time t = 0 the base of the layer is raised to
T = T* (where T* is less than the 1iquidus§. A partially
molten layer begins to grow. For simplicity a perfect binary
system is assumed. It will be assumed that the bulk composi-
tion is not at the eutectic, and that the bulk composition lies
to the side of the eutectic such that xg = 0. The analysis for
the other side of the phase diagram (xf = 0) would proceed in
analogous fashion. Moreover, the Boussinesq approximation
(i.e., pf = pg everywhere except in the buoyancy terms in the
momentum equation) is made. Then the following non-dimensional
variables are invoked:
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¢' = ¢/60 3 ¢o = constant, the partial melt
fraction at the phase change boundary (3.1)
| B . = ,n 2

K' = K/K_ ; K, = o0 /4,
% is grain size, d = constant (3.2)
(w' W' o= waW/W s W =K /ng (1-¢) teg (3.3)

K (r_ + 4/3n))

2t =zl ;6 = [0S sTy1/2 (3.4)

nf
t' =t/ ; T = ¢06/Wo (3.5)

| - - -

T' = (T Te)/(T* Te) (3.6)

Upon substitution of (3.1) through (3.6) into (2.1) through
(2.8) and making simplifications similar to Richter and
McKenzie [8], one obtains:

%%E - (- WT =0 (3.7)
2 1 - 9¢_¢)
d"w _ - o'’ _
dz WK (T - ¢o: ° ©-®
2
oT _ 2y 37T -3 43 (1 -
3E " (ra/6%) ;;7 + S( 5t + rve (1 ¢o¢)w) (3.9)
" (- o o)W
we=-— 0" (3.10)
K =47, (3.11)

where, for convenience, the primes have been dropped from the
dimensionless variables. In equation (3.7) a phase relation-
ship of the form xf = bT is incorporated, where b is a con-
stant. In (19) it is assumed that c§ = cg = cp, a= K/pCp, and
S = L¢0/ATcp. Equations (3.8), (3.10), and (3.11) are identi-
cal to corrésponding equations of Richter and McKenzie [8]
Equation (3.9§ is the energy equation that is neglected in

Richter and McKenzie's [8)] treatment; and (3.7) is analogous to
their conservation of mass equation, except in the present
analysis the mass fraction of the light component is conserved
explicitly. Because the light component xf is related to the
temperature through the requirement of thermodynamic equilib-
rium, equations (3.7) through (3.10) represent four equations
in four unknowns, ¢, w, W, T. The parameter b relating the
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mass fraction of the light component in the fluid to the tem-
perature through the constraint of thermodynamic phase equilib-
rium does not appear in equations (3.7) through (3.11). The
reason is that (3.7) through (3.11) involve heat and mass
transfer during the compaction process and the dynamics of this
process is driven by the bulk density difference between the
melt and the crystalline matrix. This density difference is
assumed to be constant. Superimposed on the compaction dyna-
mics are compositional and/or thermal instabilities within the
melt itself. These instabilities would arise because of compo-
sitional and temperature gradients that would affect the
density distribution in the melt. In the calculation of this
perturbed density distribution, the magnitude and sign of b are
of critical importance. Equations (3.7) through (3.10) are
solved subject to the following boundary conditions;

w=W=0 at z =0, z = h(t)/s (3.12)
¢ =1 at z = h(t)/s (3.13)
T=0 at z =h(t)/s (3.14)
T=1 at =z=0, . (3.15)
and initial conditions;
T(z,0) = 0 - (3.16)
¢(2,0) =0 ‘ (3.17)
h(0) =0, (3.18)

where h(t) is the location of the partial melt boundary at time
t. This boundary is determined by the equation:

kaT/sz = ¢0Lpdh/dt . (3.19)

Equations (3.7) through (3.11) with conditions (3.12)
through (3.19) define, mathematically, the problem of melt
migration in a growing layer of a binary partial melt, heated
from below, in which thermodynamic equilibrium is maintained.
The solutions to these equations would represent the zeroth
order state, perturbations of which could lead to instabilities
within the melt itself. Solutions to even the zeroth order
state can be solved only numerically, except in the most
trivial cases. Considerable insight into the importance of
magma migration and matrix deformation on the zeroth order
thermal regime can be gained, however, simply by examining the
scale variables Wy, &, t as a function of Ky, ng, by examining
the dimensionless thermal conduction scale at/é64, and by com-
paring h to § as a function of 7. The latter comparison
depends upon the parameter S. For typical values L = 105 j/kg,
AT = 100°C, cp = 103 j/kg/oC, ¢o = 0.1, S = 0.1. Table 1 shows
Wo, 8, 1, and at/62 for a range of values Ky, ng. Table 1 also
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TABLE 1. Material Properties and Scale Variables as Functions
of KO and nee

(a) Material Properties and Constants:
¢o = 0.1 g = 10 m/s2 s2
a =103 tg + 4/3 ng = 1018 Pa-s
ap = 500 kg/m3 a =106 n?2/g

(b) Scale Variables:

ng (Pa-s) W (m/s) s (m) v (s) ar/é2

K, = 10-10 m2 (g = 10_2 m)

10t 5 x 10°° 3 x 10° 6 x 10’ 6 x 1070

102 5 x 107/ 103 2 x 108 x 1074

107 5 x 1070 102 2 x 107 0.2

108 5 x 10713 1 2 x 1081 2 x 10°
K, = 10712 42 =103 W

10! 5% 1079 3 x 10° 6 x 108 6 x 1077

102 5 x 1077 102 2 x 10° 0.2

104 5 x 10711 10 2 x 1010 x 102

108 5 x 10712 107} 2 x 1012 x 108

shows that, if S = 0.1, for high permeability and for low vis-
cosity (i.e., basaltic) magmas, the conduction term in (3.9) is
negligible, compared to the term involving compaction, whereas
for highly viscous (i.e., granitic) magmas, compaction has
virtually no effect on the temperature distribution in the
Partially molten layer. The zeroth order solution for
'granitic" magmas is governed by thermal conduction. For
intermediate magmas and high permeability or fluid magmas and
low permeability, both conduction and compaction determine the
thermal regime. Each of the extreme cases, termed compaction
dominated and conduction dominated, respectively, is discussed
below semi-quantitatively. By restricting the discussion to
those cases where the relative importance of the various
effects is clear, direct solution of the governing equations is
not necessary. The recognition of the likely importance of
instabilities within the melt during melt production and migra-
tion in a low viscosity basaltic melt on the dynamics of migra-
tion, the unimportance of such instabilities in high viscosity
granitic systems, and the likely importance of shear in the
dynamics of melt migration in the latter systems is all that 1S
sought in this paper.
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4, DISCUSSION

To fix the discussion in terms of simple silicate phase
diagrams, the ternary diopside-plagioclase phase diagram to
represent low viscosity basic melts and the ternary quartz-
plagioclase phase diagram to represent high viscosity silicic
melts are considered. These phase diagrams are admittedly
great oversimplifications of naturally occurring basaltic or
granitic melts, but they do serve to show the important aspects
of the density behavior as functions of composition and tem-
perature. The pertinent phase diagrams are shown in Figs. 1
and 2, respectively. Note the effect of water on the densities
calculated for Fig. 2 has been neglected. 'Because the fol-
lowing discussion is largely qualitative, the interpretation of
the ternary phase diagrams in terms of two-component systems
does not present serious obstacles to understanding the basic
physics of the processes being cénsidered.

4.1. Compaction-dominated systems

Consider first the c?mpaction-dominated system given by
ng = 101 Pa-s, Ky = 10710 02 in Table 1. An examination of
(3.9) reveals that the thermal conduction term is Qegligible
compared to the compaction term except in a very thin boundary
layer. The heat transport that arises because of compaction
will modify the motion of the phase boundary from the ordinary
conductive (Stefan) case, but suppose for the sake of argument
that this can be neglected. Then the motion of the phase
boundary is given, approximately, by Carslaw and Jaeger [20]:

n(t) = 2(att/0.2)/2 (4.1.1)

where the factor (0.2) comes from boundary condition (3.9).
Thus, in a unit of time equal_to the compaction time t (i.e.,

t =1), h~ 35 mor h/é6 = 1072, Even if t = 10, h/s = 3 x
10-2," But if t = 10, Richter and McKenzie [8] show that all
but e~l of the melt is expelled from the porous layer, assuming
a constant initial porosity. Their model is somewhat different
from that considered here in that h is fixed a priori, but
nevertheless their results suggest that for the current model a
liquid-rich layer of considerable thickness ought to develop.

- A further complication may arise, however; the melt in the

partially molten layer may be convectively or gravitationally
unstable.

Consider the bulk compositions labelled a and b in Fig. 1.
For bulk composition a, the composition of melts first formed,
under equilibrium melting, lie along the cotectic to the left
of a until all the plagioclase is melted. With additional
heating, diopside is the only residual crystalline phase in the
melt. Thus, in a layer of bulk composition a, heated from
below, the density of the melt increases with increasing tem-
perature, and the melt is gravitationally stable. Compaction
occurs rapidly compared to the rate of growth of the layer,
however; and a relatively liquid-rich melt layer is likely to
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FIGURE 1. Phase diagram for Di-An-Ab. The temperature con-
tours are plotted according to Weill et al. {17]. Liquid
densjties are calculated following Mo et al. [18]. a and b
refer to assumed bulk compositions as discussed in text. The
arrows show the liquid composition paths for the assumed bulk

compositions.

be formed. If this layer forms by simple vertical flow, with-
out mixing, it would have a destabilizing thermal gradient and
a strongly stabilizing compositional gradient. The layer would
become monotonically unstable to a finite amplitude perturba-
tion when the thermal Rayleigh number for the layer exceeds the
critical value of 103 [21]. Thus, instability in the melt-
rich layer of thickness D would occur, approximately, when:

- Ra = __g_____p(l 3 10 . (4.1.2)
anf >

With « = 3 x 1072/°C, » = 3 x 103 kg/m3, 8 = 0.01°C/m, and
other parameters given by Table 1, one obtains D ~ 1 m.

Now consider bulk composition b, in the plagioclase field.
As in case a, the composition of the first melts formed lie
along the cotectic until all of the diopside is melted. The
melt composition then moves off the cotectic and into the
plagioclase + liquid field (see the arrow in Fig. 1). The melt
having a composition on the cotectic is more dense than melt
having a composition in the plagioclase + liquid field. Thus,
for a layer of bulk composition b that undergoes equilibrium
melting and is heated from below so that the temperature at the
base is great enough for all the Di to be consumed, the melt at
the top of the layer is more dense than melt at the base of the
layer. This situation is gravitationally unstable, and one
would expect a Rayleigh-Taylor instability to develop.
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FIGURE 2. Phase diagram for Q-An-Ab at one atmosphere pres-
sure, projected onto the anhydrous plane [19]. Liquidus densi-
ties, excluding water, are calculated following Mo et al. [18].
¢ and d refer to bulk compositions discussed in text. The
arrows show the liquid composition paths for the assumed bulk

compositions.

Admittedly, the details of the development of a Kayleigh-
Taylor instability in a growing, compacting layer of partial
melt are difficult to describe even qualitatively. Because
compaction is rapid in low viscosity, partially molten systems,
a fluid rich, gravitationally unstable layer might be expected
to form rather rapidly. It is interesting to see how thick
such a layer would need to be for the growth time for the
Rayleigh-Taylor instability to exceed the compaction time
scale. In the simple example shown by Turcotte and Schubert
[22] for two layers of equal thickness and viscosity, with a
density contrast Ap, the minimum growth time is:

26nf

TR_T = K—QED_ (4.1.3)

where D is the total thickness of the melt-rich layer. 1If tg.t
is set equal to the compaczion time t = 6 x 10/ s, Ap = 0.005,
ng = 10 Pa~s, then D = 10°% m.

These results, though based on an extremely oversimplified
analysis of the stability problem, strongly suggest that low
viscosity melts produced in a compacting layer heated from
below are likely to be highly unstable. This result does not
appear to be sensitive to the starting composition, and though
the calculation has been based on the model of a growing par-
tially molten layer, it is difficult to imagine that the insta-
bilities suggested here would not occur in an ascending diapir.
It is very noteworthy that the melt instabilities would occur
in such thin layers (~meters), because it implies that on the
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spatial scales involved in melt production in the mantle,
presumably of the order of kilometers to a few tens of kilo-
meters, the instabilities would be extremely vigorous.

At the risk of carrying this simplistic analysis from the
boundaries of reason to the realm of pure fantasy, three more
possible implications of these results are suggested. First,
the occurrence of instabilities in the melt changes the melt
segregation problem from a one-dimensional one to a two- or
three-dimensional one. One-dimensional models may offer very
little insight into the dynamics of melt segregation in the
mantle. The two- or three-dimensional nature of the motions in
the melt would give rise to lateral changes in the motion of
the melt front and locally enhance melt segregation at some
places along the melt front. That is, diapirs may form on the
melt boundary. Secondly, the melt would be expected to undergo
vigorous mixing in the production zone. Major and trace
element distributions in the segregated melt may represent
compositions that have been averaged over a considerable range
of pressure and temperature and not represent a melt batch
having a simple eutectic composition. Lastly, because partial
melt is continually generated at the top of the growing layer,
even as an unstable, melt-rich layer is forming in the interior
of the layer, one can see how zones of different melt fraction
can be formed. Such a distribution of melt fractions may give
rise to magmons [10].

4.2. Conduction-dominated systems

Now consider, for example, the case nf = 108 Pa-s, Ko =
10712 p2 ip Table 1. This system corresponds to a fine-grained
granite. Clearly, the conduction term in the heat transfer
equation (3.9) is much more important than the compaction term.
Equation (4.1.1) is an excellent approximation to the growth of
the layer. In a unit of compaction time, t = 1, for this
system, h_ 2 6 x 103 m. Melt migration is negligible compared
to the growth of the partially molten layer. The question of
melt stability can be addressed as in the preceding section.

Consider as examples the bulk compositions c¢ and d in Fig.
2. The analysis of the density structure in the partial melt
is analogous to that in the preceding section. The principal
difference, however, is that quartz replaces diopside as the
third component of the phase diagram. Because quartz is less
dense than plagioclase, whereas diopside is more dense, the
density structure is reversed. The partial melt with bulk
composition ¢ (i.e., quartz + liquid field), shows a density
inversion, whereas a partial melt with bulk composition d is
stably stratified. 1In both of these cases, however, melt
instabilty does not play an important role. Suppose one
assumes that a melt-rich layer, equal to the compaction thick-
ness , developed in a unit of compaction time in a liquid with
bulk composition c¢. The growth time for the Rayleigh-Taylor
instability in this layer, with the sgme parameters as used
previously in (4.1.3), except ng = 10° Pa-s and D = 6§, gives:
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tpp £ S x 100 s, (4.2.1)
which is somewhat less than the compaction time. But an insta-
bility that occurred on a scale of 10-1 m could not be expected
to be observed. The monotonic, finite-amplitude instability
for this system (i.e., bulk composition d), with the same
parameters as used previously in (4.1.2), gives D ~ 50 m. The
Rayleigh number is only 0.2 percent of the critical value.
Again, even if the compacting layer were unstable, the insta-
bility would occur on spatial scales that are much less than
the layer dimension. Such instabilities could not have a
significant effect on the dynamics of the partially molten
layer.

One is then left with the question as to how magma migration
and melt segregation occurs in granite systems, because matrix
compaction and melt instability appear to play such a small
role in the dynamics of the partially molten system. An answer
to this may be found, possibly, from the detailed field studies
of the Mt. Arabia migmatite in Georgia [23]. The Mt. Arabia
migmatite is an anatectic partial melt in which progressive
degrees of partial melting may be observed. According to Size
and Covert ?23], shear structures are the sites of incipient
melt films; and when the melt fraction reaches approximately
25%, the melt coalesces into larger braids and arteries as a
result of shear and matrix deformation. Braids on the order of
meters in width are observed. The critical features in melt
segregation in granites may be a combination of a large melt
fraction (permeability) and shear deformation as well as simple
compaction.

From Table 1, one sees that if Ky = 1010 p2 § =1m, 1=
2 x 1011 5. The factor at/é62 = 2 x 10, so the system is still
dominated by thermal conduction. The compaction length scale,
which is roughly equivalent to the length scale of melt migra-
tion resulting from shear, is roughly the scale at which melt
coalescence is observed in the Mt. Arabia migmatite. In a time
of 2 x 1011 s, equation (4.1.1) gives a layer thickness of ~2 x
103 m, which is not unreasonable. It thus appears to a first
approximation, that observed features of melt segregation in
granitic melts can be explained on the basis of the two-phase
flow model of McKenzie [7], though not on the basis of one-
dimensional compaction alone. Nevertheless, it is interesting
that the general theory has some credence in field data. At
present there is no field verification of the McKenzie model

for basalt melt segregation.

5. CONCLUSIONS

The dynamics of melt segregation is extremely important in
geology, and appears to be exceptionally complex, particularly
when one places thermodynamic constraints on the system. One-
dimensional compaction models are useful for estimating the
order of magnitude of the effect of matrix deformation. 1In
melts of low viscosity, thermal conduction is unimportant, and
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melt dynamics is controlled by a combination of matrix deforma-
tion and convective or Rayleigh-Taylor instability within the
melt itself. These combined effects will give rise to two- or
three-dimensional processes that may tend to focus the locales
of melt migration. These processes have not yet been treated
quantitatively in any fashion. One would suspect that the
chemical signature of the source zone is considerably smeared
as a result of melt instabilty in the production zone. It
would be difficult to unravel such factors as degree of partial
melting and other source characteristics in any more than an
average sense.

On the other hand, in melts with high viscosity, thermal
conduction dominates the thermal regime. Compaction and shear
deformation act together to segregate the melt from the matrix.
The melt is stable with respect to convection until large
quantities of liquid have coalesced.
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APPENDIX
List of Symbols
a - thermal diffusivity of solid-melt mixture (a = k/pcy)
b - a constant relating mass fraction of light componen@ to
temperature assuming thermodynamic equilibrium
cp - specific heat at constant pressure
d - a constant
D - thickness required for melt layer to be unstable
g - acceleration due to gravity
h - location of the melt boundary
K - permeability
¢ - grain size
L - latent heat
P - pressure
Ra - Rayleigh number
g - Stefan number L¢/ATCp
T - temperature
T* - temperature at base of layer
Te - temperature at top of layer (the eutectic temperature)
uj - velocity components in melt (i = 1,2,3)
Ui - velocity components in matrix (i = 1,2,3)
w- - vertical velocity of melt
W - vertical velocity of matrix
Greek Symbols:
a - thermal expansion coefficient
g - thermal gradient

r{,r's - rates at which components 1,2 are transferred from

melt to matrix

s - compaction length (a scaling length)

¢ - bulk viscosity

n - shear viscosity

¢« - thermal conductivity of melt-matrix mixture

p - density

Tt - compaction time (a scaling time)

TR-T - growth time for Rayleigh-Taylor instability

¢ - porosity (volume fraction of melt)

x - mass fraction of light component of melt
Subscripts:

f - fluid

o - reference value

s - solid
Sup?rscript:

dimensionless parameter
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