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ABSTRACT

Magma reservoirs reside primarily in crystal-rich states, yet plutonic and volcanic examples indi-

cate that rapid open-system cycling is common, as expressed in complex crystal zonation. Open-

system magmatic events can fluidize crystal-rich magma (mush), but the dynamics of these events

are poorly understood. We employ discrete element method-computational fluid dynamics simula-

tions of the intrusion of a basaltic liquid into an olivine-basaltic mush to reveal the hydrogranular

controls and kinematic states during a momentum-driven, open-system event. Three stages are
described: (1) the initial response of the mush, characterized by viscoplastic expansion along

crystal–liquid faults enclosing a fluidized region we call the mixing bowl; (2) the quasi steady state

stage, where the intruding liquid transits the mixing bowl as a crystal-poor chimney and generates

crystal–liquid mixing by a combination of vertical transport and overturn in granular vortices; (3)

the termination of the open-system event, where crystals settle and slump into a packed state. The

local crystal–liquid Viscous number and the time-dependent average crystal coordination number

rationalize the presence of multiple hydrogranular dynamic regimes. Using a boundary layer based
kinetic law we find that the crystals experience dissolution rates of �10 lm h–1. These rates fall

within the range of values for olivine dissolution previously determined by experimental and theor-

etical studies. The presented simulation demonstrates that most crystal and liquid mixing occurs

within the fluidized mixing bowl. The hydrogranular controls on crystal and liquid motion have the

potential to create a diverse crystal cargo during a single open-system event, even in a geologically

simple system.
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INTRODUCTION

Magma reservoirs are dominated by near-solidus, high

crystal-fraction conditions (known as a magmatic
mush) for tens of thousands to millions of years (Reid,

2008; Schmitt, 2011; Cooper, 2015). Yet complexly

zoned crystals erupted from crystal-rich magmas re-

quire rapid mobilization, occurring on timescales over

days to hundreds of years (Costa & Morgan, 2011; Kahl

et al., 2011, 2013; Moore et al., 2014; Cooper, 2015;

Shea et al., 2015; Cooper et al., 2016). Open-system in-
trusions of magma into magmatic mushes can rapidly

disaggregate and mobilize the near-solidus magma,

and explain the eruption of distinct populations of crys-

tals (Wallace & Bergantz, 2005; Ruprecht et al., 2008;
Streck, 2008; Girard & Stix, 2009; Burgisser & Bergantz,

2011; Kahl et al., 2011; Huber et al., 2012; Thomson &

Maclennan, 2013; Bergantz et al., 2015) and crystals out

of equilibrium with their carrier liquids (Passmore et al.,

2012; Neave et al., 2013; Moore et al., 2014). However,

the mechanics and temporal evolution of an open-
system intrusion are not well understood (Bergantz &

Breidenthal, 2001). Geological examples demonstrate

that intruded magma can percolate or pond in the
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resident mush (Perugini & Poli, 2005; Paterson, 2009;

Costa et al., 2010), or can lead to mush disaggregation

and eruption (Kahl et al., 2011; Passmore et al., 2012;

Thomson & Maclennan, 2013).

The presence of crystals greatly affects the mech-
anics of a magma through both hydrodynamic and

granular interactions (Marsh, 1981). Crystal concentra-

tions of as little as 25 vol. % can form crystal contact

networks (Philpotts et al., 1999), which can cause jam-

ming, strain localization, variable crystal packing, and

the transmission of stress by crystal–crystal contacts

called force chains (Sun et al., 2010; Sandnes et al.,
2011; Estep & Dufek, 2012). There are several mechan-

isms that can lead to the fluidization of crystals within

a mush, including gas-driven overturn (Ruprecht et al.,

2008), buoyancy-driven overturn from basal intrusion

and heating (Girard & Stix, 2009; Burgisser & Bergantz,

2011; Huber et al., 2012), and momentum-driven fluid-
ization by magmatic intrusions (Bergantz et al., 2015).

An open-system, momentum-driven intrusion can

fluidize a crystal-rich mush when the intruding liquid

locally separates contacts between crystals. This cre-

ates locally dilute (higher porosity) regions of the

mush, which behave as a mobile fluid rather than a
viscoplastic solid.

Investigating the mechanics involved in an open-

system intrusion requires an approach that resolves

both the crystal-scale and the mush-scale throughout

the event. We present a discrete element method-

computational fluid dynamics (DEM-CFD) simulation to

examine the granular and fluid dynamics of basaltic
liquid intruding into an olivine-rich basaltic mush. The

particle-based numerical modeling is described in the

Supplementary Data (available for downloading at

http://www.petrology.oxfordjournals.org) and includes

frictional, collisional, translational, and buoyant forces,

as well as viscous particle–particle–fluid coupling. This
approach reveals the microphysical controls on fluidiza-

tion and mixing in a mush over a range of spatial scales

simultaneously, which cannot be resolved with con-

tinuum modeling (mixture or Eulerian–Eulerian multi-

fluid theories). The particle-based simulation records

the motion of all crystals within the mush, allowing us

to examine crystal gathering and dispersal during the
intrusion.

We have described some general features of magma

dynamics using the DEM-CFD method in two previous

publications. In Bergantz et al. (2015) we introduced the

notion of the ‘mixing bowl’ but did not describe the dis-

tinct time-dependent regimes throughout an open-
system cycle. In Schleicher et al. (2016) we described

how crystal mixing could be quantified. Here we docu-

ment and describe the distinct kinematic stages of an

open-system event in a magma mush, and present a

scaling to describe the multiphase dynamics under

crystal-rich conditions. We also monitor the mixing be-

tween the crystals and the resident and intruding li-
quids, and their potential for recording the intrusion

with crystal growth or dissolution.

MULTIPHASE SIMULATION OF AN INTRUDED
MAGMATIC MUSH

To exemplify the mechanics of an open-system intru-

sion, we consider a geologically simple, yet common

crystal-rich system: an olivine-mush in basaltic liquid

(Table 1). To create the mush, we randomly distribute

olivine crystals throughout the domain and allow them

to settle. Crystals naturally organize into a random
loose-packed bed, creating an average crystal fraction

of �0�6. We saturate the crystals with a resident liquid,

which extends above the bed into a crystal-free region.

An intruding, crystal-free liquid enters the mush as a

dike into the base of the domain at a constant momen-

tum flux. The properties of the resident and intruding li-
quids are the same, approximating conditions observed

in basalts (Table 1); calculations with MELTS indicated

that melt density changed only 0�6% over the 50 degree

temperature interval assumed here and so will have

negligible influence on the dynamics. Basaltic systems

are often intruded by liquids with similar temperatures,

viscosities, and densities to those residing within the
mush (Rhodes, 1988; Geist et al., 2006), therefore all

simulations are run with isothermal conditions. The

open-system nature of the intrusion requires a domain

where liquid is allowed to leave the top to accommo-

date the constant momentum flux of the intruding li-

quid. This assumption is supported by geological
examples where input can be accommodated by crustal

deformation (Gerbi et al., 2004; Baker & Amelung,

2012). Additionally, magma can drain from cracks in the

crust above magma reservoirs, allowing intruding

magma to fill in the void spaces without accompanying

crustal deformation (Johnson et al., 2010). The walls

and base of the domain have a no-slip boundary condi-
tion for the liquid, and a wall-friction law for the crystals.

The majority of liquid and crystal motions occur far

from the walls, so boundaries have little influence on

the overall dynamics of the system. Simulations are 2�5-

D, with the depth of the domain given by the diameter

of the crystals. However, this value is much less than
the other spatial dimensions in the system, creating an

Table 1: Simulation parameters

Parameter (units) Variables Values

Domain size (m) Dw, Dh 2�56, 1�28
Computational grid size (m) 0�01, 0�01
Injection width (m) Iw 0�32
Liquid density (kg m–3) ql 2650
Liquid dynamic viscosity (Pa s) ml 0�2
Crystal density (kg m–3) qc 3300
Crystal diameter (m) dc 0�004
Initial bed height (m) H0 0�823
Number of crystals N 147040
Simulation time (s) t 100
Injection velocity (m s–1) U0 0�023
Minimum fluidization

velocity (m s–1)
Umf 0�0025

Mixing bowl taper angle
from the vertical (radians)

a p/6
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effectively 2-D system. The theory and equations

describing the numerical simulations can be found in

the Supplementary Data.

MECHANICAL FLUIDIZATION OF MAGMATIC
MUSHES

The general concept of fluidization as used in industry

and sedimentary geology refers to the support of a bed

of particles by the upward drag exerted by a fluid. The

fluid works against gravity, expanding and supporting
the bed from a stationary rest state. To fluidize a crystal-

rich mush, the intruding liquid must enter at a sufficient

rate to overcome the weight of the crystal bed. This rate

is known as the minimum fluidization velocity (Umf),

which is commonly calculated using the Ergun equation

(Ergun, 1952). This equation for the minimum fluidiza-

tion velocity estimates the velocity of the injected liquid
needed to induce a drag force on the crystals equaling

the weight of the crystals. In these calculations, the

work needed to overcome initial contact friction be-

tween the crystals is ignored.

Scaling model variables for applications to
natural examples
The application of a model to natural examples requires
scaling variables to ensure consistent extension of

model results to other similar applications. Hence, the

thermophysical properties and the system geometry

need to be represented in terms of scaled quantities. In

the case of our model of a crystal mush, these are the

size of the crystals, the liquid viscosity, the thickness of

the bed, and the rate of the incoming new intrusion that
acts as to fluidize the crystal bed. One quantity that

embodies all these degrees of freedom is the minimum

fluidization velocity. In our simulations, liquid intrudes

only a portion of the base of the crystal bed. We also

know from our results described below that the fluidiza-

tion occurs as a tapered geometry, an emergent prop-
erty of the calculations, and we apply that ex post facto

to ensure the proper scaling. Because of this, the Ergun

equation must be modified to account for only the crys-

tals that are fluidized in the region above the intrusion.

As in Bergantz et al. (2015) and Schleicher et al. (2016),

we use a modified Umf calculation in our simulations,

which accounts for the small injection region relative to
the domain size (Cui et al., 2014):

1

2
aBI2

wln
2H0

Iw

� �
U2

mf þ aAIw H0 �
Iw
2

� �
Umf

¼ ðIw þ H0 tan aÞH0ðqc � qlÞgð1� elÞ
(1)

A ¼ 150
ð1� elÞ2

e3
l

 !
ll

d2
c

(2)

B ¼ 1�75
1� el

e3
l

 !
ql

dc
: (3)

In these equations, a is the angle from the vertical

formed by the tapered geometry of the mixing bowl

(Fig. 1), Iw is the width of the injection region, H0 is the
height of the crystal–liquid bed, Umf is the minimum flu-

idization velocity, el is the liquid fraction (porosity), ll is

the dynamic viscosity of the liquid, ql is the liquid dens-

ity, dc is the crystal diameter, qc is the crystal density,

and g is the magnitude of gravitational acceleration.

Only one intrusion rate is exemplified in our detailed

example presented here; however, varied intrusion
rates of the intruded liquid change the emergent behav-

ior of the mush (Schleicher et al., 2016). We introduce a

non-dimensional velocity U*, which is the injected vel-

ocity of the liquid (U0) divided by the Umf of the mush

(U*¼U0/Umf). At low intrusion rates (U*�1), the liquid

is unable to fluidize the crystals and passes through the
mush by porous flow. Intermediate intrusion rates

(U*� 1) create a short, crystal-poor cavity, and higher

intrusion rates (U*> 1) extend the cavity into a chimney

(Philippe & Badiane, 2013). In magmatic systems, open-

system intrusions may occur with liquid rising slowly

through the mush, passing through the crystals as por-

ous flow (U*< 1). Examples of this exist in Iceland and
in other rift zone systems (Costa et al., 2010; Thomson &

Maclennan, 2013). Other intrusions can enter the mush

with sufficient momentum to fluidize the crystals

(U*>1), leading to mixing and possibly eruption

(Passmore et al., 2012; Neave et al., 2013; Moore et al.,

2014).

THE CYCLE OF AN OPEN-SYSTEM INTRUSION
EVENT

Below we describe the three stages that a model
crystal-rich mush might experience during an open-

system event where a portion of the resident mush is

fully fluidized. These stages correspond to (1) the initial

response of the mush to the intrusion, (2) the self-

similar, quasi steady state stage, and (3) the shut-off

stage at the end of the open-system event. Distinct

multiphase regimes can exist simultaneously during
these stages of the intrusion as a result of the changing

particle volume fraction (Jaeger et al., 1996; Andreotti

et al., 2013). The highest particle fraction regime (�0�5)

is called the quasi-static state, where particles are in

constant frictional and normal contact. Relative particle

motion occurs by particle translation governed by the
inter-particle geometry (Roux, 2009). At intermediate

volume fractions (�0�5–0�1) is the dense granular

H0

Fig. 1. Schematic illustration of the simulation domain (Dw is
width, Dh is height) and emergent mixing bowl, illustrating the
variables used in equations (1)–(3).
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regime (MiDi, 2004; Jop, 2015) where particles are fluid-
ized, but frequent contacts between particles may be

sustained (frictional) or collisional. At very low particle

fractions (<0�1) the granular flow is in the dilute regime,

where particle contacts are infrequent, and momentum

is exchanged by collisions (Goldhirsch, 2003). These

three granular regimes express the diversity of mechan-
ical behavior exhibited by the mush throughout an

open-system cycle. A video of the simulation can be

viewed in the online Supplementary Data (Movie 1).

Initially fluidizing the mush by intrusion of new
magma
When the new magma intrudes the resident crystal-rich
mush, the mush responds as a viscoplastic material. The

initial crystal packing in the bed (ec� 0�6) results in con-

tinuous contact between crystals (i.e. the quasi-static

granular regime). Slight variation in crystal volume frac-

tion exists in the bed (Fig. 2b), which is the result of nat-

ural settling of the crystals to form the mush. At the start
of the intrusion, pore pressure created from the intruding

liquid exceeds the frictional yield strength of the mush;

the viscoplastic response of the mush includes vertical
expansion and simultaneous fluidization along bounding

crystal–liquid faults (Fig. 2a). We use the term ‘fault’ be-

cause the initial failure is one involving frictional forces,

there is manifest material displacement across the inter-

face, the interfaces persist with minor erosion along the

surfaces, and the faults are at approximately 60� angles
to the horizontal on both sides of the intrusion, as pre-

dicted by Mohr–Coulomb failure criteria. They are faults,

rather than shear zones. At the crystal scale, each fault is

not a single plane (line, in the case of the 2D simulation),

but a band of crystals moving along 60� angles from the

horizontal (see inset image in Fig. 2a). The crystal net-

works can be �10–100 crystals long, and the lateral ex-
tent of the crystals creating the macroscopic faults can

be �10–20 crystals wide. The faults delimit the region of

the mush that is unlocked by fluidization, and this region

is referred to as the ‘mixing bowl’.

The geometry of the mixing bowl is established

by this initial response and is insensitive to changes
in intrusion rates exceeding the Umf. In this simulation

the intrusion rate is 9�26 times the Umf (U*¼ 9�26). The

Fig. 2. Four time steps from the simulation of the open-system intrusion, where t*¼ (U0/H0)t. (a), (c), (e), and (g) show the crystals
(colored bands) and liquids (black for resident liquid; white for intruding liquid); (b), (d), (f), and (h) show the crystal volume fraction
for the same times. Black dashed lines in (a) represent the extent of the mixing bowl and inset image shows the lines of crystals
forming the granular faults. Color bar in (b) illustrates the crystal volume fraction. The variations in crystal volume fraction within
the bed represent the variable packing of the crystals from the initial random settling. (See text for additional description and
details.)
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mixing bowl is a robust feature indicating that the nu-

merical experiments satisfy the criteria for a self-similar

extensible result. For example, varying the mush height

does not alter the angle of the faults delimiting the mix-

ing bowl, even when the height of the bed is less than
half the width of the intrusion. As shown later in the

simulation, most of the mixing that occurs in the mush

is within the mixing bowl, the only portion of the mush

that is mobilized.

The initial viscoplastic response of the mush is fol-

lowed by block uplift of the resident mush within the

mixing bowl, similar to experiments by Johnsen et al.
(2008). After the initial uplift, the intruding liquid forms

a small crystal-poor cavity that breaks up into finger-like

instabilities as penetrative convection of the new liquid

enters the mush. Around each instability is a halo of flu-

idized crystals that propagates ahead of the intruding li-

quid. The fingers do not rise at the same rate, and the
shear stress at their margins entrains them together to

form a single, rising, crystal-poor feature (these dy-

namic features are best seen in the Supplementary

Data Movie 1). The length scales of this process are not

recoverable by Saffman–Taylor viscous scaling (where

less viscous material intrudes more viscous material)
owing to intermittent flow from particle jamming

(Sandnes et al., 2011). The rising intruding liquid en-

trains crystals from the base of the mush and carries

them upwards to the top of the crystal bed. This crystal–

fluid coupling hinders the formation of lasting crystal

contacts, placing the low-crystal fraction instability

within the dilute granular regime (Burgisser et al., 2005;
Andreotti et al., 2013).

Once the initial instability has penetrated the entire

mush the initial transient ends, leaving a feature we call

the chimney (Fig. 2c and d). The chimney is a region of

continued throughput and high porosity, surrounded by

variably fluidized mush. Outside the dilute chimney, the
mixing bowl remains in the quasi-static regime where

the crystal volume fraction is close-packed. The upper

portion of the mixing bowl has a lower crystal volume

fraction and is in the dense granular regime.

The self-similar mixing bowl
After the initial transient described above, the dynamics

in the mixing bowl are governed by quasi steady state,

self-similar behavior (Fig. 2e) (self-similar describes an

object or condition whose proportions remain the same

as it becomes larger or smaller; the features are scale

invariant). The approximate geometry of the mixing

bowl persists, although there is minor crystal transport
from erosion of the bounding granular faults. The dom-

inant feature within the mixing bowl is the crystal-poor

chimney. Throughout the intrusion, the chimney rises

through the mush with varicose and meandering insta-

bilities (Huppert et al., 1986). These forms of instability

reflect the moderate Reynolds numbers (�10–100) of
the chimney as it moves through the mush [see fig. 7 of

Huppert et al. (1986)]. The varicose instabilities cause

liquid to arrive at the top of the mush in pulses, creating

local variations in crystal fraction within the dense

granular regions at the top of the mixing bowl (Fig. 2f).

As the crystal-poor liquid rises through the mush, it

entrains crystals from the base of the mixing bowl and
the sides of the chimney. These crystals are carried to

the top of the mush and deposited on either side of the

chimney, while the chimney liquid bifurcates and rises

to mingle with the resident liquid above the mush. The

entrainment, vertical transport, and deposition of crys-

tals by the chimney create counter-rotating ‘granular

vortices’ that mix the crystals and liquid at the top of the
mixing bowl. The overturn time of these granular vorti-

ces is approximately the same as the transit time of a

crystal through the entire chimney. Owing to the me-

andering chimney, the vortices are not perfectly sym-

metric within the mixing bowl. However, the persistent

fluidization of the mixing bowl maintains a self-similar
geometry. In addition to upwards translation of crystals

by the chimney, coherent tongues of crystals move

downwards along the crystal–liquid faults of the mixing

bowl. This continued upwards and downwards motion

of the crystals extends the well-mixed portion of the

mixing bowl towards the intrusion site. We have previ-
ously shown (Schleicher et al., 2016) that the majority of

the crystals within the entire mixing bowl eventually be-

come well mixed.

Termination of the intrusion and defluidization of
the mush
Once the new magma input is terminated, the mixing

bowl begins to defluidize and collapse (Fig. 2g and h).

The collapse happens rapidly at the bottom, where low-

porosity, crystal-rich tongues slump into the former

location of the chimney, re-establishing a quasi-static
regime. This rapid collapse hinders additional mixing of

the liquids, so a fossil chimney of intruded liquid re-

mains. In the higher porosity core of the mixing bowl,

the re-establishment of the close-packed mush occurs

as hindered crystal settling. The top of the mixing bowl

has a concave-up shape with pronounced shoulders,

which formed as some crystals were transported out of
the mixing bowl during the intrusion. Once the crystals

have returned to a settled state, the mixing bowl will

have a fossil kinematic and compositional character,

distinct from the surrounding mush that was undis-

turbed by the intrusion.

GRANULAR MECHANICS AND THE VISCOUS
AND COORDINATION NUMBERS

The three stages of the open-system event described

above demonstrate the complexity of dynamic states

that can be manifested by multiphase systems with

high particle concentrations. Multiple hydrogranular re-

gimes are present at any given time during the simula-
tion; these regimes are distinguished by the local

particle fraction, the timescales involved with particle
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motion, and the shear rate. This is because the trans-

mission of force by hydrogranular interactions has nu-

merous sources: collisions, enduring frictional contact,

lubrication, and fluid viscous effects. This is especially

the case in particle-rich systems such as those con-
sidered here, where the forces and particle support are

transmitted along quasi-linear force chains that appear

stochastically (Cates et al., 1998; Sun et al., 2010; Estep

& Dufek, 2012). This produces a support fabric com-

posed of load-bearing particles and spectators (Cates

et al., 1998; Sun et al., 2010; Estep & Dufek, 2012). The

force chains that form the support fabric migrate in re-
sponse to external forcing, such that a particle that is a

spectator one moment may be load-bearing the next.

Even in simple, unimodal mixtures this can often pro-

duce non-affine deformation and non-local conditions

such that the stress at a point depends on the degree of

mobility in the surroundings as well as the shear rate
(Trulsson et al., 2012).

One system property that has been invoked for dis-

tinguishing mechanical states is the critical crystal frac-

tion associated with jamming (ec,c) (Marsh, 1981).

A thorough discussion of jamming, which progresses

through a succession of micro- and macrofragile states
(Cates et al., 1998; Ness & Sun, 2016) to hard jamming

when a critical shear stress (not shear rate) is exceeded

(Peters et al., 2016), is beyond the scope of this work, so

we simply adopt the findings of Ness & Sun (2015),

where a threshold particle fraction for monodisperse

spherical particles occurs between 0�57 and 0�59. The

highest particle fractions define the quasi-static regime,
where particle contacts are enduring and frictional con-

tact is the primary mechanism of force transmission.

The dense granular regime is challenging to generalize

with a bulk rheology, as the behavior depends not only

on volume fraction, but also sample preparation (Daerr

& Douady, 1999), confining pressure, and shear rate (da
Cruz et al., 2005). Once the system reaches ec,c, the

granular media macroscopically behaves as a plastic

material, controlled by a friction criterion with a linear

relationship between shear and normal stresses.

Despite this complexity, remarkably, the same ap-

proach that has been useful in illuminating the funda-

mental controls on dilute multiphase flow (Burgisser
et al., 2005) can be employed in high-particle fraction

conditions. That is, the microscopic response timescale

of a single particle relative to the macroscopic timescale

of the far-field forces acting on that particle can rational-

ize the multiphase physics. For example, in the context

of dilute flow, this is the ratio of the microscopic aerody-
namic response time of a particle to the time a macro-

scopic carrier phase (fluid in this case) exerts a distinct

force on it. This led to the introduction of a Stokes

number, which is the ratio of those two timescales. If the

Stokes number is low the particle follows the fluid as a

tracer, whereas if the Stokes number is high the particle

is not bound to the fluid motion and is acting as a ballis-
tic particle in the inertial state (Burgisser et al., 2005).

The same notions of a particle response timescale

relative to the behavior of the carrier phase emerge in

dense multiphase flow (du Pont et al., 2003; Cassar

et al., 2005). The premise is that particles exist in a

granular framework where particle–particle contacts are
idealized as points, and where force is collectively trans-

mitted in a ‘granular continuum’. The mechanical con-

nection between a particle and its neighbors is

quantified by the particle coordination number, Z,

which is a count of all the contacts between a particle

and its neighbors. Conceptually, this granular con-

tinuum plays the same role in controlling the macro-
scopic scales as the fluid in dilute flows. Now if the

granular framework is sheared, a particle can be dis-

placed from its initial position and coordination state by

macroscopic forces working against a microscopic

restoring gravitational force (or some general restoring

pressure for neutrally buoyant crystals), which will act
to return it to the previous location. If the macroscopic

forces acting on the particle carry it beyond its original

location before the particle can re-establish contact with

its neighbors in the granular continuum, the coordin-

ation number will approach zero. In this scenario, the

particle is effectively an inertial or ballistic particle (even
at low particle-Reynolds number), with respect to the

granular continuum, just as in the dilute case. This leads

to a disassociation of the granular continuum, a reduc-

tion in the local particle volume fraction and a decrease

in the number density of force chains.

The particle–fluid coupling can be quantified by the

value of a Viscous number (Iv), where it is assumed that
the particle response time is governed by viscous

forces (Trulsson et al., 2012; Ness & Sun, 2015):

Iv ¼
3ll _c

2ðqc � qlÞgdc
: (4)

Here ll is the dynamic viscosity of the liquid, _c is the

local shear rate of the liquid (calculated at the

computational-cell scale), qc and ql are the densities of

the crystals and liquid, respectively, g is the gravita-

tional acceleration, and dc is the diameter of the crys-

tals. As in dilute flows, a value of Iv�1 indicates that
the particle will recover from any perturbation and re-

establish contact with the granular surroundings, and

enduring frictional contacts are the primary means of

force transmission. If Iv�1 the particles lose contact

with their neighbors, the granular mixture is disassoci-

ated, and particle interactions are primarily collisional;

the multiphase mixture becomes a dilute granular flow.
The Viscous number ignores numerous microphysical

processes such as pore pressure and fluid transport

through the adjacent granular media, dissipation asso-

ciated with lubrication, non-spherical particle shape,

non-ideal point contacts (with non-zero surface area),

etc.
The granular state of the system at one time step is

shown in Fig. 3, which represents the same time step as

in Fig. 2e and f. The location of the mixing bowl is
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outlined by red dashed lines. The background image il-

lustrates the magnitude of the Viscous number on a

logarithmic scale. The white lines represent equal vol-

ume fractions of fluid and particles (ec¼ 0�5). In general,
ec> 0�5 on either side of the contour within the mush,

and ec< 0�5 in the chimney, fluidized region, and

crystal-free portion at the top. An exact value for ec,c has

not been determined for our system, but the naturally

settled bed of monodisperse crystals has an average

particle fraction of 0�58, within the critical range for the
transition found by Ness & Sun (2015) (polydisperse

crystals with respect to size and shape will have a differ-

ent average packing). Many of the crystals are in pock-

ets of hexagonal packing, but variations from the initial

random settling create thin regions of lower particle

fractions (Fig. 2b). These thin regions might represent

volume fractions less than ec, but the dominant behav-
ior of the mush outside the mixing bowl is quasi-static,

so we choose to illustrate a particle fraction of 0�5. The

regions with the highest values of Iv also have particle

fractions of 0�1 or less, corresponding to the dilute

granular regime. Regions of the system with higher val-

ues of Iv vary through time as liquid in the chimney
rises in pulses and meanders through the mixing bowl.

The coordination number, Z, is a measure of the

availability of a particle to transmit and dissipate energy

by collisional and frictional interactions. The porosity

shown in Fig. 2 is a cell-averaged property and is not a

complete description of the local granular state of the

system. Figure 4 shows the average coordination num-
ber as a function of scaled time, with t*¼ (U0/H0)t for

the simulation (Supplementary Data Movie 2). Three

distinct phases can be seen that correspond to the three

stages described above: a transient start-up period

where progressive fluidization produces dilation and a

reduction in the coordination number, a quasi steady
phase where the dissipation fluctuates around an aver-

age indicating both hydrodynamic and granular modes

of dissipation, and the re-establishment of the granular

state once the intrusion ceases. It should be noted that

during the collapse of the mixing bowl after the shut-
off, the coordination number increases over the original

value of the settled bed, reflecting the sensitivity to

packing from settling to the proximity of other crystals.

Lastly, Fig. 4 shows that the coordination number has a

high-frequency component overprinting the long-

wavelength temporal behavior. Although our sampling

density is not sufficient to do a spectral analysis, we
suggest that the high-frequency component may reflect

the stochastic ‘chatter’ produced by force chains form-

ing and dissipating as a result of the unsteadiness in the

driving fluid flow. Hence it provides a window into the

microscale mechanics that recovers a time dependence

not apparent in the velocity for example.
Previously, multiphase models for magma dynamics

have employed a model for multiphase flow that is an

Fig. 3. The Viscous number of the intrusion at t*¼1�48 (Fig. 2e and f). Red dashed lines show the mixing bowl and white lines rep-
resent equal volume fractions of liquid and crystals (ec¼ el¼0�5). Iv is illustrated by shades of blue, represented with a logarithmic
scale.

Fig. 4. Average coordination number for crystals within the lat-
eral extent of the mixing bowl (shown as grey box in the inset
image) through time. The maximum coordination number for
the monodisperse crystals is six, representing hexagonal pack-
ing. Also labeled are the times when the crystal-poor chimney
breaks through the top of the crystal mush, and the timing of
the end of the intrusion when the melt supply is shut off.
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extension of continuum models. Hence it might seem

reasonable to represent the dynamics of the open-

system event as a reduced system by invoking either a

granular-fluid constitutive model (Boyer et al., 2011) or

a mixture continuum rheology with a suspension vis-
cosity. However, Fig. 3 illustrates the challenges in try-

ing to describe the dynamics in those contexts. The

shear rate varies in time and space and a local pressure,

as required by the model of Boyer et al. (2011), is not

uniquely defined. Even in regions with low values of Iv,

there is still local phase-relative motion and mixing

(Schleicher et al., 2016). Extending the granular rhe-
ology approach to a non-local constitutive model

(Kamrin & Koval, 2012) still requires an assumption of

locally steady conditions, which are not obtained in our

results, nor likely to be found in nature. Comparisons

between our discrete element method (DEM) results

and a continuum model for the same system (not
shown here) with a yield strength and suspension rhe-

ology did not recover the same kinematic template as

the higher resolution DEM model, and produced results

that were significantly different in the distribution of

strain, mixing and particle transport. This exposes the

limitations of the suspension rheology approach in
high-particle fraction systems and reaffirms the import-

ance of resolving the micro-granular mechanics to ad-

equately address the mechanics of crystal-rich magma

mushes.

THE CRYSTAL RECORD OF THE OPEN-SYSTEM
EVENT

Much of the evidence for open-system magmatic

events comes from processes recorded at the crystal

scale, such as zoned crystals and the existence of di-

verse crystal populations (Wallace & Bergantz, 2002;

Costa et al., 2010; Kahl et al., 2011, 2013; Viccaro et al.,

2016). When crystals encounter magmatic environ-
ments of changing chemical potential, they can respond

by growth, recording the changes through chemical

zoning, or by dissolution, producing resorption features

in the crystals. Open-system mixing can also bring to-

gether distinct crystal populations formed by crystals

with different reaction histories.
Our particle-based simulations allow us to track crys-

tals and the liquid in which they reside during the open-

system intrusion. This capability recovers the crystal

gathering and dispersal dynamics. To illustrate crystal

transport and reaction during an open-system event,

we monitored three pairs of crystals that are proximal

at the final time step of the simulation (Fig. 5;
Supplementary Data Movie 3). These pairs represent

crystals that would be adjacent in a thin section of a vol-

canic or plutonic sample. Figure 5a shows the trajecto-

ries of the three pairs of crystals throughout the

simulation. White circles outlined in black indicate the

initial locations of each crystal, and black circles out-
lined in white show the final position of the three crystal

pairs. The grey band at the bottom illustrates the

location of the intrusion, and white dotted lines repre-

sent the mixing bowl. The image in the background is

the final time step of the simulation, showing the mix-

ing between the resident (black) and intruded (white)

melts.
Monitoring the three pairs of crystals also illustrates

the potential diversity in liquid composition a crystal

could encounter during an open-system event (Fig. 5b).

The changing liquid composition is associated with a li-

quid scalar, which represents variations in temperature

or chemical composition between the incoming and

resident magmas. The liquids in our simulation have
been shown to have negligible changes in thermophysi-

cal properties, but maintain their compositional distinc-

tions and potential for reaction, so the scalar simply

expresses the proportions of intruding and resident li-

quids with values between zero and one: zero is the

resident liquid (black), one is the intruding liquid
(white), and values between zero and one are a mixture

of the two liquids. Mixing takes place by both advection

and chemical diffusion, and the diffusion equation is

described in the Supplementary Data. The horizontal

axis is the non-dimensionalized time of the simulation,

with t*¼ (U0/H0)t. The arrow at t*¼1�65 indicates the
end of the intrusion.

The differences in the scalar concentrations encoun-

tered by the three pairs of crystals reflect the sensitivity

to initial position and the kinematics of subsequent mix-

ing. The purple crystals are initially directly above the

intrusion, and are carried up through the mixing bowl

by the fingering instabilities that eventually form the
crystal-poor chimney. This is the only period of time

when they encounter the intruding liquid. Once they

reach the top of the mixing bowl, the purple crystals are

deposited into the quasi-static edges of the mixing

bowl, where little crystal–crystal and crystal–liquid rela-

tive motion occurs for the duration of the intrusion and
resettling. The green crystals are initially on the edges

of the mixing bowl, where the crystal–liquid faults form.

Both crystals’ motions roughly parallel the faults, first

moving upwards as the mush expands to accommo-

date the intruding liquid, and then downwards as crys-

tals slide down the faults to replace the central crystals

entrained by the chimney. The green crystals encounter
the chimney liquid only near the end of the intrusion,

and approach a mixed scalar concentration of� 0�4 as

the crystals settle back into the mixing bowl.

The orange crystals encounter a greater diversity of

granular regimes than the purple and green pairs. The

dark orange crystal initially encounters the intruding li-
quid, but is left at the base when the instability that car-

ries it merges into the central chimney. Eventually it is

entrained in the chimney, but its trajectory is not

straight owing to the varicose instabilities of the rising

liquid. During this time, the light orange crystal remains

in the quasi-static regime, traveling downwards

through the mixing bowl until the chimney entrains it as
well. Both orange crystals enter the dense, granular vor-

tices, where they travel through the upper portion of the
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mixing bowl together, experiencing a full rotation. The

dilute and dense regimes of the mixing bowl in this re-

gion promote crystal–crystal–liquid mixing, giving a

final scalar concentration of �0�3 for the orange crys-

tals. This value is lower than that for the green crystals
residing near the fossil chimney liquid, which did not

mix as thoroughly with the resident liquid.

We can use the variable scalar compositions encoun-

tered by the different crystals to determine what the

crystals could record during the single open-system in-

trusion. We use the approach of Chen & Zhang (2008)

[based on the work of Kerr (1995)] to calculate the con-
vective reaction rate of two crystals as they encounter

the intruding liquid during the simulation. As a crystal

moves through a liquid with changing physicochemical

conditions, a compositional boundary layer forms

around the crystal. In convective reaction, the relative

velocities of the crystal and liquid determine the
thickness of the boundary layer, rather than a time-

dependent boundary layer in the case of diffusion-

controlled dissolution (Donaldson, 1985). Within the

boundary layer, crystal reaction is controlled by the dif-

ference in timescales of diffusive mass transfer and

interface reaction (Chen & Zhang, 2008). Although this

model of reaction is most simply described as dissol-

ution, it can also be applied to crystal growth. However,

crystal growth is complicated by the possibility of sim-

ultaneous growth on existing crystals and the nucle-

ation of new crystals, which would produce different
crystal size distributions and clustering (�Spillar &

Dolej�s, 2013, 2014). Should the reaction rate be negative

(indicating growth), it is assumed growth occurs only

on pre-existing crystals.

To determine the olivine reaction rate, we use the

MgO concentration in the crystals and liquid for the

equilibrium-determining component as in Chen &
Zhang (2008). We use the MELTS software (Gualda

et al., 2012) to calculate the equilibrium MgO weight per

cent in olivine crystals and basaltic liquid at a tempera-

ture 50�C colder than the liquidus, with the basalt start-

ing composition from Rhodes (1995). The resident liquid

and crystals are assumed to initially be at this lower
temperature, and the intruding liquid is at the liquidus

temperature. We use a constant density for the liquids,

which have nearly equal densities over the temperature

range considered; the difference is only 0�6%. Numerical

simulations with heat transfer (not shown) indicate that

there is little thermal inertia or thermal–chemical

Fig. 5. (a) Trajectories of three pairs of crystals monitored during the simulation. White circles with black outlines illustrate starting
location for all crystals; black circles with white outlines show the ending location of each crystal pair. White dashed lines show the
mixing bowl. Resident (black) and intruding (white) liquids during the final time of the simulation are shown in the background. (b)
The composition of the liquid scalar in which each of the crystals reside. Resident liquid has a scalar concentration of zero; intrud-
ing liquid has a value of one. The arrow at t*¼1�65 shows the end of the intrusion.
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decoupling, so we use the scalar value tracking the

intruding liquid as a proxy for the temperature of the li-

quid. We calculate the temperature using a linear rela-

tionship between the scalar concentration and

temperature; a scalar value of zero has the temperature
of the resident liquid, whereas a value of one represents

the liquidus temperature. The results from MELTS pro-

vide a linear relationship between temperature and

MgO composition, and we use this relationship to esti-

mate the far-field liquid composition in which the crys-

tals reside at every time step.

The convective reaction rate was given by Chen &
Zhang (2008) as

u ¼ bD

d
(5)

which comprises the diffusivity (D) of the equilibrium-

determining component (here MgO) and the compos-

itional boundary layer thickness (d). The boundary layer

thickness is determined by the relative velocity between
the crystal and the surrounding liquid, and the diffusiv-

ity of the equilibrium-determining component (MgO) in

the liquid [see equations (7)–(10) of Chen & Zhang

(2008)]. The boundary layers calculated in the simula-

tion range between �10–5 and 10–4 m. Also included in

the convective reaction rate is a dimensionless param-

eter (b) that determines crystal growth or dissolution
(negative or positive value, respectively):

b ¼ qlðC0 � C1Þ
qcðCc � C0Þ

: (6)

This parameter depends on the densities of the liquid

(ql) and crystal (qc), the MgO weight per cent in the li-

quid within the crystal–liquid interface (C0), the far-field
(i.e. the liquid computational cell) MgO weight per cent

(C1), and the MgO weight per cent in the crystal (Cc).

We use the thermometer of Putirka [2008, equation (13)]

to calculate the interface liquid composition as a func-

tion of temperature (T), which is independent of

pressure and the compositions of the far-field melt and

crystal:

C0 ¼
T � 994�4

26�3 : (7)

To apply this approach to our simulation, we
assumed the crystals were initially in equilibrium with

the resident liquid (i.e. C0¼C1). However, the interface

melt composition is independent of the composition of

the crystals and the external melt [equation (7)], and be-

cause of this produces disequilibrium conditions when

the crystals are stationary within the resident melt. The

reaction rate calculation [equation (5)] is for convective
reaction, therefore stationary crystals require a

convection-free model that is beyond the scope of this

study (Liang, 2000; Chen & Zhang, 2008). We apply the

calculation only to crystals that are continuously moving

relative to the liquid (the orange crystals from Fig. 5).

The light orange crystal does not encounter the intruding
liquid during the beginning of the intrusion, so we set

the crystal dissolution rate to zero during this time.

The results of the reaction calculation for the two or-

ange crystals are shown in Fig. 6. Both crystals experi-

ence positive reaction rates, indicating that they

undergo dissolution only when interacting with the

intruding liquid. During the simulation, the dark orange
crystal would dissolve a total of 0�38 lm from the rim,

whereas the light orange crystal, which encountered

the intruding liquid later in the simulation, would dis-

solve 0�25 lm. The high-frequency variations in the

crystals’ dissolution rates are due to the changing scalar

concentration (see Fig. 5b) and relative velocity be-
tween each crystal and the surrounding liquid. Despite

being highly variable, the relative velocities are low,

with Reynolds numbers between �10–4 and one. The

average rates of dissolution for the examined crystals

are 13�7 lm h–1 for the dark orange crystal, and

12�6 lm h–1 for the light orange crystal during the time it

encountered the intruding liquid. Assuming constant

Fig. 6. Dissolution experienced by the orange crystals from Fig. 5. Continuous light and dark orange lines show the dissolution
rate that each crystal experiences during the simulation. Dashed black lines show the accumulated dissolution rate that both crys-
tals experience during the simulation. The arrow at t*¼1�65 shows the end of the intrusion.
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dissolution rates with these averages, the 2 mm radius

crystals would dissolve fully after �6–7 days.

The convective reaction rates calculated from the

simulation fall within the range of rates from previous

experiments and theoretical calculations for similar
temperatures and compositions. Experiments by

Donaldson (1985) gave dissolution rates for olivine at

near-liquidus temperatures of 9–14 lm h–1. Liang (2000)

calculated theoretical rates for olivine solid solution

diffusion-controlled (rather than convection-controlled)

dissolution of �3–36 lm h–1. The rates we calculate are

lower than the hypothetical dissolution rate of
52�6 lm h–1 calculated by Chen & Zhang (2008), who

considered a crystal falling in a melt with a constant,

disequilibrium composition. The crystal and liquid com-

positions chosen for the example used by Chen &

Zhang (2008) represent a larger disequilibrium than the

compositions in this study, which explains the faster
dissolution rates. We conclude tht the rates calculated

for the crystals represent realistic values when reacting

by convective dissolution to the intruding liquid.

The reaction rates for the orange pair of crystals rep-

resent crystal dissolution when they encounter the

intruding liquid. However, natural crystals can have re-
versely zoned rims, indicating that the rims grew from a

more primitive liquid prior to eruption. For crystal

growth to occur in our simulation, the far-field compos-

ition of the melt (C1) would need a higher MgO content

than that of the interface liquid (C0). These quantities

are both calculated as functions of temperature [from

MELTS and equation (7)], and for a given temperature
C0 is always greater than C1. In the presented simula-

tions, the crystal, interface liquid, and far-field liquid are

at the same temperature, making crystal growth impos-

sible. However, if the thermal inertia of a crystal were

considered, it is possible for a crystal encountering a

higher temperature far-field liquid to generate a thermal
(and therefore, compositional) gradient that would pro-

mote crystal growth. This hypothesis requires add-

itional simulations that include heat transfer to monitor

the temperatures of the crystals and far-field liquid

separately.

GEOLOGICAL IMPLICATIONS OF THE OPEN-
SYSTEM MODEL

Although our DEM-CFD model of intrusion of a melt

into an olivine mush is highly simplified, we offer some

tentative implications of the modeling that may illumin-

ate conditions found in natural examples. The primary

benefits of using DEM-CFD arise from the resolution of
small-scale crystal–crystal mechanical interactions, and

the tracking of individual crystal trajectories and re-

sponse as mixing proceeds.

The resolution of crystal-scale interactions allows for

extreme strain localization and frictional behavior to be

modeled. It is this behavior that produces the distinct
morphology of the mixing bowl. And similar processes

operating in a mush may produce the frequent

observation of cryptic internal contacts in plutons,

which are often rootless in the sense that they do not

obviously connect with any through-going externally

derived tectonic feature. Rather, these features juxta-

pose elements of a crystal-mush with itself, producing
cross-cutting looking features but without substantial

changes in mode (Paterson, 2009). Hence any external

or internal process that can produce pressure changes

such that some fluidization can locally occur, releasing

frictional crystal contacts, may produce what is recog-

nized in the field as a contact. That contact itself may

not have any significance in the sense of magmas that
are temporally discordant and originate elsewhere. The

simulations suggest that in hydrogranular systems

such as a crystal mush, frictional forces are to be ex-

pected and strain localization is common. Hence mod-

els that invoke a continuum assumption to describe

geological observations are not adequate for crystal-
rich systems, perhaps to even as low as 30% crystallin-

ity, and describing crystal-rich transport with notions

taken from simple fluid dynamics as done by Glazner

(2014), are inadequate to illuminate the diversity of be-

havior encountered in natural examples.

Another feature of the mixing process described
above [also see Schleicher et al. (2016)] is that new

magma injections interact with the mushy reservoir in a

pulsating fashion. The fact that enclaves are very com-

mon in silicic rocks but their feeder systems are rarely

recognized suggests that the production of discrete en-

claves and the ‘digestion’ or break-up of their feeder

system happen simultaneously. As seen in Fig. 2, the
pulsating mechanical response of the mush bifurcates

the incoming magma. If the host magma was silicic and

the incoming magma mafic and subject to chilling to

produce a stable but ductile rind, this process would

produce enclaves, and erase the distinct dike-like char-

acter of the feeder zone as suggested in Fig. 2g.
The simulations of crystal chemical response to

open-system input, although highly simplified, make it

clear that caution is warranted when using the crystal

record of open-system events to infer distinct mixing

episodes; the interested reader is directed to Schleicher

et al. (2016) for more discussion of mixing systematics.

Although we consider only a few crystals here as proof
of concept examples, even in this highly simplified

scenario the crystal cargo is incredibly diverse. And al-

though we are not in a position yet to offer quantitative

statistical guidelines to address sample ergodicity in

resolving distinct open-system events, it is to be ex-

pected that proximal crystals will probably have dis-
cordant reaction time-series.

CONCLUSIONS

The presented simulation illustrates the localized re-

sponse of a crystal-rich mush to an open-system intru-

sion. The emergence of the fluidized mixing bowl
confines crystal and liquid mixing to this region,

whereas the surrounding mush is relatively unaffected.
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Little to no intruded liquid passes through the mush

into the overlying reservoir without some mixing with

the resident liquid owing to vertical transport and over-

turn in the mixing bowl. The self-similarity of the mixing

bowl indicates that different intrusion rates or mush
characteristics (e.g. liquid and crystal composition,

mush height, intrusion width) would generate a similar

fluidized region, as long as the intruding liquid exceeds

the minimum fluidization velocity of the mush.

Prolonged intrusion could increase the lateral extent of

the mixing bowl as crystals erode along the crystal–

liquid faults, but the overall geometry would persist.
Although the simulation represents a geologically

simple system, we document the mechanical and com-

positional diversity that can arise from an open-system

intrusion. The mixing bowl and surrounding mush con-

tain a variety of hydrogranular regimes, reflecting the

changes in local crystal fraction and coordination num-
ber. The variation in these regimes leads to non-affine

crystal and liquid motion within the mixing bowl.

Crystals that are proximal at the end of the intrusion

may have followed different trajectories through the

mixing bowl and reacted with a variety of liquid com-

positions. Whereas the tracked crystals in our simula-
tion undergo only dissolution when reacting with the

intruding liquid, natural systems with variable liquid

temperatures and compositions could produce a com-

plex crystal cargo, even from a single open-system

event.
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H. (2011). Patterns and flow in frictional fluid dynamics.
Nature Communications 2, 288.

Journal of Petrology, 2017, Vol. 0, No. 0 13



Schleicher, J. M., Bergantz, G. W., Breidenthal, R. E. &
Burgisser, A. (2016). Time scales of crystal mixing in magma
mushes. Geophysical Research Letters 43, 1543–1550.

Schmitt, A. K. (2011). Uranium series accessory crystal dating
of magmatic processes. Annual Review of Earth and
Planetary Sciences 39, 321–349.

Shea, T., Lynn, K. J. & Garcia, M. O. (2015). Cracking the olivine
zoning code: Distinguishing between crystal growth and dif-
fusion. Geology 43, 935–938.

�Spillar, V. & Dolej�s, D. (2013). Calculation of time-dependent nu-
cleation and growth rates from quantitative textural data:
Inversion of crystal size distribution. Journal of Petrology
54, 913–931.

�Spillar, V. & Dolej�s, D. (2014). Kinetic model of nucleation and
growth in silicate melts: Implications for igneous textures
and their quantitative description. Geochimica et
Cosmochimica Acta 131, 164–183.

Streck, M. J. (2008). Mineral textures and zoning as evidence
for open system processes. In: Putirka, K. D. & Tepley, F. J.,
III (eds) Minerals, Inclusions and Volcanic Processes.
Mineralogical Society of America and Geochemical Society,
Reviews in Mineralogy and Geochemistry 69, 595–622.

Sun, Q., Jin, F., Liu, J. & Zhang, G. (2010). Understanding force
chains in dense granular materials. International Journal of
Modern Physics B 24, 5743–5759.

Thomson, A. & Maclennan, J. (2013). The distribution of olivine
compositions in Icelandic basalts and picrites. Journal of
Petrology 54, 745–768.

Trulsson, M., Andreotti, B. & Claudin, P. (2012). Transition from
the viscous to inertial regime in dense suspensions.
Physical Review Letters 109, 118305.

Viccaro, M., Giuffrida, M., Nicotra, E. & Cristofolini, R. (2016).
Timescales of magma storage and migration recorded by
olivine crystals in basalts of the March–April 2010 eruption
at Eyjafjallajökull volcano, Iceland. American Mineralogist
101, 222–230.

Wallace, G. S. & Bergantz, G. W. (2002). Wavelet-based correl-
ation (WBC) of zoned crystal populations and magma mix-
ing. Earth and Planetary Science Letters 202, 133–145.

Wallace, G. S. & Bergantz, G. W. (2005). Reconciling heterogen-
eity in crystal zoning data: An application of shared charac-
teristic diagrams at Chaos Crags, Lassen Volcanic Center,
California. Contributions to Mineralogy and Petrology 149,
98–112.

14 Journal of Petrology, 2017, Vol. 0, No. 0



 

 

1 

 

SUPPLEMENTARY TEXT 

 

The mechanics and temporal evolution of an open-system magmatic intrusion into a 

crystal-rich magma 

J. M. Schleicher1, G. W. Bergantz1 

1Department of Earth and Space Sciences, University of Washington, Seattle, 

Washington, 98195 USA 

 

INTRODUCTION 

This supplementary text includes details of three supplementary movie files. It also 

provides details of the simulation methods, which include the model theory and 

governing equations, simulation initialization, and code validation.  

 

SUPPLEMENTARY MOVIES 

Movie 1  

Movie of Figure 2, showing the simulation of the open-system intrusion into the crystal-

rich mush. The left shows the crystals and liquids, and the right shows the corresponding 

crystal volume fraction. 

 

Movie 2 

The same simulated intrusion as Movie S1, but the crystals are colored based on their 

coordination number. Values range from one, representing crystals touching only one 

other crystal, to six where crystals are in hexagonal packing. Figure 4 shows the average 

coordination number of crystals within the indicated region (see Figure 4 inset) through 

time, calculated from this movie. 
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Movie 3 

The same simulation as Movies 1 and 2, highlighting the crystals monitored in Figures 5 

and 6. The three pairs of crystals have been shown with the same colors in these figures, 

but are 2.5 times larger than their actual size to increase their visibility. 

 

SIMULATION METHODS 

Multiphase fluid simulation theory and algorithm 

We performed simulations using a modified version of the MFIX (Multiphase Flow with 

Interphase eXchange) numerical algorithm developed by the DoE supported National 

Energy and Technology Laboratory. It simulates multiphase flow by employing discrete 

element method-computational fluid dynamics (DEM-CFD). This is a Lagrangian-

Eulerian approach for solid (crystal) and fluid (liquid) phases, respectively, where crystal 

phases are explicitly resolved and the liquid phase is treated as a continuum. This method 

allows us to model hydrodynamic, hydrodynamic-to-crystal, crystal-to-hydrodynamic 

and crystal-to-crystal interactions, that is, the so-called 4-way coupling. Collisions, 

sustained frictional contact, buoyancy, fluid drag and interphase momentum transport 

between phases are directly resolved with the soft-sphere approach, using a spring-

dashpot system to model the contact forces (Cundall & Strack, 1979). The MFIX DEM-

CFD algorithm has been verified and validated (Garg et al., 2012a, 2012b; Li et al., 

2012) including the physical effects of chemical reactions (Li & Guenther, 2012); 

validation is discussed in detail below. Our simulations were run on the Stampede Cluster 

at the Texas Advanced Computing Center (TACC).  
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Governing Equations 

The liquid phase is described with the governing equations for mass and momentum 

conservation: 

   1 

   2 

Here, εl is the volume fraction of the liquid phase, ρl is the liquid density, vl is the liquid 

phase velocity vector, g is the gravitational acceleration, Ilc is a coupling term that 

involves the transfer of momentum between the liquid and crystal phases, and 
 
S

l
 is the 

liquid-phase stress-tensor, given by: 
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Pl is the liquid-phase pressure,  I  is the identity matrix, and 
 
t

l
 is the liquid-phase shear 

stress tensor. μl and λl are the dynamic viscosity and second coefficient of viscosity for 

the liquid phase, and 
 
D

l
 is the strain rate tensor. The second coefficient of viscosity is 

typically small but included here for completeness. 

An advection-diffusion equation is employed to model transport of a scalar attached 

to the liquid phase. This scalar acts as an inert tracer of a compositional field associated 

with new magma and is shared by mixing between the resident and incoming liquids: 
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   6 

Here Cl is the concentration of the liquid scalar and Dl is the diffusion coefficient for the 

scalar in the liquid phase. The cation diffusivity in basaltic melts is typically of order    

10-10 m2/s (Richter et al., 2003). This produces a scalar Peclet number of at least order 

105 for the most active regions of flow for the duration of the simulations. Therefore, the 

scalar diffusivity was set to zero with no noticeable change in the scalar field. Hence 

modeled variations in the scalar field are entirely due to advective mixing and numerical 

diffusion. We did not quantify the effects of numerical diffusion on scalar mixing. 

The crystals in the simulation are Lagrangian particles, with coupled equations 

solved for individual crystals at each time step. The position of the crystals and their 

linear and angular momentum are calculated according to Newton’s Laws:  
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   9 

The superscript (i) represents each crystal within the domain, X(i)(t) is the crystal 

position, V(i)(t) is the crystal linear velocity, and m(i) is the ith crystal’s mass. 
   
F

T

( i)(t) is the 

sum of the forces acting upon the ith crystal, 
   
F

d

( iÎk )(t) is the total drag force on the ith 

crystal in the kth liquid cell, and 
   
F

c

( i)(t) is the contact force from interactions with other 
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crystals. The equation for angular velocity, , includes the ith crystal’s moment of 

inertia 
  
I ( i) =

m( i)d
c

( i)

10
 and the sum of the torques 

   T
( i)(t) acting on the ith crystal. 

Additional details of the implementation of the spring-and-dashpot model for 

calculating collisional forces used in MFIX can be found in the documentation of the 

MFIX-DEM algorithm (Garg et al., 2012b). The values of the crystal-crystal coefficient 

of friction, restitution, and spring constant required for DEM are 0.1, 0.1, and 105 kg/s2, 

respectively. The sensitivity of model outcomes to the choice of DEM parameters 

depends on the dynamic regime considered (Paulick et al., 2015) although it has been 

noted particle dynamics in fluidized beds are not very sensitive to the choice of DEM 

contact parameters (Tsuji et al., 1993). The coefficients of friction (μf) for non-

compacted, olivine crystals in melt have never been measured. Hence we assessed the 

sensitivity of both the quasi-static and fully-fluidized model results to variations in 

contact friction from values of 0.03 to 0.5. Neither the quasi-static results, the formation 

of fluidized granular eddies, nor the mixing characteristics changed significantly over this 

interval, so a value of 0.1 was used.  

For brevity we do not repeat the development of the DEM model in-depth where the 

restitution coefficients and spring constants are defined, the interested reader is directed 

to Garg et al. (2012a, 2012b). The value of the restitution coefficient (e) changes for 

collisions of particles in a viscous liquid, as shown by experimental results (Yang & 

Hunt, 2006). The authors defined a parameter called the binary Stokes number for 

colliding particles in a viscous liquid:  
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where m*=(1/m1+1/m2)
-1 and rc

*=(1/r1+1/r2)
-1 are the reduced mass and radius of the two 

particles in the collision, respectively, (U1-U2) is the relative approach velocity of the 

particles, and μl is the fluid dynamic viscosity. The restitution coefficient of two colliding 

particles increases with increasing StB. Our simulations generate StB << 1, therefore based 

on the empirical data of particle-particle and particle-wall interaction in a viscous fluid 

the choice of e = 0.1 is appropriate (Yang & Hunt, 2006). 

The values used for the particle stiffness coefficients (kn, kt) are smaller than those of 

the natural materials because using the actual values incurs simulation times that exceed 

any practical limits. However it has been shown in validation studies that reducing the 

particle stiffness coefficients (spring constants) does not produce measureable error, and 

this is common practice throughout the CFD-DEM community (Nakamura & Watano, 

2007). A DEM study (Coetzee & Els, 2009) demonstrated that particle stiffness 

coefficients below 105 kg/s2 resulted in variable internal friction angle within the granular 

material. However, for kn values at and above 105 kg/s2 and low particle friction 

coefficients (μf < 0.2), the angle of internal friction did not vary as a function of stiffness 

coefficient. We also performed a sensitivity study of the stiffness coefficients and found 

values that satisfy validation and do not give unrealistic compaction of the particle bed 

 

Simulation initialization and properties 

The simulations are 2.5-D, with the third dimension equaling the width of a crystal. Our 

simulation is for a dike-like body whose long dimension is into-and-out-of the plane of 

the domain, so 3-D edge effects are ignored and the liquid motion is governed by the 

quasi-2-D geometry. Accurate resolution of both the liquid and crystal dynamics requires 
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that the liquid continuum grid-cell size has to be less than 1/19.3 of the domain size, and 

larger than 1.63 crystal diameters (Peng et al., 2014). We performed grid resolution 

studies and found that at a grid cell of 2.5 crystal diameters gave stable and reproducible 

results. The number of crystals is well above the minimum required to recover scalable, 

ensemble-averaged behavior (Ness & Sun, 2015). 

The injection rate used in the simulation falls within the range of magma ascent rates 

of 10-4-101 m/s for volcanoes in a range of tectonic settings as estimated by geochemical, 

petrographic, and geophysical studies (Girard & Stix, 2009; Parks et al., 2012; 

Rutherford, 2008). Specifying the intrusion rate is appropriate for modeling open-system 

events driven by momentum, rather than by thermal or compositional buoyancy. This 

choice of input style is motived by the common occurrence of a complex crystal cargo in 

mixed magmas, with crystal clots, rapidly created disequilibrium features, and evidence 

for near instantaneous mingling of large volumes of magma (Costa et al., 2010; Davidson 

et al., 2001; Wallace & Bergantz, 2005), all of which indicate that many open-system 

events are strongly forced and can undergo mixing and mingling. In addition many open-

system events have evidence that the open-system process has sufficient energy to 

overcome viscosity barriers producing mingled magmas with crystal transfer (Ruprecht et 

al., 2012) as well as evidence of crystals transported out of a crystal mush which requires 

fluidization.  

Solid boundaries have a no-slip boundary condition for the fluid and a wall-friction 

law for the crystals, but the majority of fluid and particle motion occurs far from the 

walls, so boundary conditions have little influence on the dynamics.  
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Code Validation 

The validation of numerical models of dense multiphase mixtures is challenging. This is 

because granular-fluid mixtures are usually opaque, making optical measurements of 

laboratory experiments difficult. Inserting instruments into experimental systems would 

interfere with the flow field by particle-instrument interactions. In addition, the large 

number of degrees of freedom and many-body interactions produce emergent behavior, 

non-local and non-affine deformation such as shear-localization, dilatancy and jamming, 

all of which are not always repeated in duplicate experiments. Laboratory experiments 

can have multi-modal grain sizes with variable density and roughness, which is hard to 

duplicate in a numerical model for validation. Hence validation of numerical models for 

dense multiphase systems is usually based on the statistics of many realizations from an 

experimental test-bed that recovers the largest scales of the dynamics such as the global 

properties of mixing, pressure-drop, bed-height, or other measures of system-scale, 

granular ensemble behavior. 

Numerous exercises have been previously performed on the MFIX-DEM code as 

validation studies (Li et al., 2012). This has included quasi-static granular flow such as 

run-out to reproduce the repose angle of glass beads, and under more dynamic conditions, 

simple multiphase shear flow, particle segregation and unmixing, as well as fully 

fluidized states. MFIX-DEM results and analog experiments gave very good agreement 

across the entire dynamic range. However we also developed validation exercises. 

As our simulations exemplify a dynamic cycle from static to fully-fluidized, we 

must demonstrate validation for both these states. The Viscous number, Iv, and critical 

particle volume fraction, εc,c, framework (defined in the main text) provide a basis for 
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identifying which dynamic regime and validation protocols are appropriate (Ness & Sun, 

2015). The Viscous number is zero in the initial quasi-static regime where the volume 

fraction is near critical at the random packing of approximately 0.6. In the fully fluidized 

regime the Viscous number is variable with values spanning more than an order of 

magnitude and with a variable crystal volume fraction that is below the critical crystal 

volume fraction. 

The validation of the initial quasi-static state where the mixing bowl is first formed 

was based on replicating the fluidization of granular soils (Alsaydalani & Clayton, 2014). 

Our model reproduced the same geometry and conditions as the analog experiments, 

indicating that our implementation of MFIX-DEM is recovering the quasi-static, 

viscoplastic, dense phase behavior. In this regime, crystal collisions are unimportant and 

are primarily frictional. Instead, sustained contact forces produce stress chains and the 

formation of bounding faults that create the mixing bowl. The formation of these 

bounding faults is followed by the Reynolds’ dilatancy leading to the initiation of 

fluidization. Our simulations capture this process, in accord with experimental results 

(Alsaydalani & Clayton, 2014). 

After the initial quasi-static response that forms the mixing bowl, four time scales 

compete to control the subsequent fluidization: one associated with the shearing from the 

momentum flux, one associated with the relaxation time of the crystal-crystal contacts, 

one associated with the steady forcing of gravity, and one associated with the dissipation 

from liquid viscosity. For the values of the Viscous number from our simulations, which 

is never greater than unity, the fluidized portion of the system is always in a quasi-

Newtonian regime. Direct validation for this regime is difficult to obtain as no existing 
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experiments satisfied all the scaling requirements for verisimilitude. Alternatively, we 

invoke a previous MFIX validation exercise (Li et al., 2012) of a bubbling fluidized bed 

as a proxy validation for our fluidized regime, as it has body forces and non-steady 

behavior. However it is in a more fluidized dynamic regime where the Viscous number is 

greater, and so the dissipation mechanisms are not going to be weighted the same as they 

are in our simulations. Nonetheless, that validation exercise, which may in fact be a more 

challenging validation test example than ours, produced excellent agreement with 

experiments. In summary, our implementation of MFIX code meets validation as far as 

can be determined from the existing analog experiments.  
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