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Magmatic reservoirs located in the upper crust have been shown to result from the repeated intrusions 
of new magmas, and spend much of the time as a crystal-rich mush. The geometry of the intrusion 
of new magmas may greatly affect the thermal and compositional evolution of the reservoir. Despite 
advances in our understanding of the physical processes that may occur in a magmatic reservoir, 
the resulting architecture of the composite system remains poorly constrained. Here we performed 
numerical simulations coupling a computational fluid dynamics and a discrete element method in order 
to illuminate the geometry and emplacement dynamics of a new intrusion into mush and the relevant 
physical parameters controlling it. Our results show that the geometry of the intrusion is to first order 
controlled by the density contrast that exists between the melt phases of the intrusion and resident 
mush rather than the bulk density contrast as is usually assumed. When the intruded melt is denser 
than the host melt, the intrusion pounds at the base of the mush and emplaced as a horizontal layer. The 
occurrence of Rayleigh-Taylor instability leading to the rapid ascent of the intruded material through the 
mush was observed when the intruded melt was lighter than the host one and was also unrelated to the 
bulk density contrast. In the absence of density contrasts between the two melt phases, the intrusion may 
fluidize the host crystal network and slowly ascend through the mush. The effect of the viscosity contrast 
between the intruded and host materials was found to have a lesser importance on the architecture 
of intrusions in a mush. Analyzing the eruptive sequence of well documented eruptions involving an 
intrusion as the trigger shows a good agreement with our modeling results, highlighting the importance 
of specifically considering granular dynamics when evaluating magmas and mush physical processes.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Evidence for injections of new magmas, also called recharge 
events, are ubiquitous in magmatic systems (Wiebe, 2016). They 
are inferred to cause the formation of long-lived, supersolidus 
magmatic reservoirs located in the upper crust (e.g. Annen et al., 
2015, 2006; Dufek and Bergantz, 2005; Karakas et al., 2017). To-
gether with the thermal structure of the upper crust and the fre-
quency of recharge, the geometry and mode of emplacement of 
the intruded magma was also identified as having a crucial effect 
on the long-term evolution of igneous bodies (Annen et al., 2015). 
Diverse evidence supports the view that magmatic reservoirs re-
side most time in a mush state that is frequently disturbed by 
injection of new magmas (e.g. Bachmann and Huber, 2016; Cash-
man et al., 2017, and references therein). A magmatic mush is a 
crystal-rich magma in which crystals are in close and sometimes 
frictional contacts, forming a semi-rigid framework where stress 
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is transmitted by force chains (Bergantz et al., 2017). As a result, 
mushes transition between crystal-rich suspensions to a ‘lock-up’ 
state that inhibits the ability of the magma to erupt.

The injection of hotter magma into a cooler host has been sug-
gested as a means to trigger volcanic eruptions (e.g. Caricchi et al., 
2014) and the intrusion style plays a fundamental role in the way 
mush rejuvenates (process of recycling the mush to generate an 
eruptible magma) prior to eruption (Parmigiani et al., 2014, and 
references therein). Several scenarios assume that the intruder is 
emplaced as sills at the base of the mush (underplating), and reju-
venate it by supplying heat but no mass except possibly exsolved 
volatiles (Bachmann and Bergantz, 2006; Bergantz, 1989; Burgisser 
and Bergantz, 2011; Couch et al., 2001; Huber et al., 2011). Other 
scenarios consider that the injected magma may penetrate the 
mush, producing various degrees of mixing with the resident mush 
depending on its buoyant acceleration (e.g. Bergantz and Breiden-
thal, 2001; Koyaguchi and Kaneko, 2000; Weinberg and Leitch, 
1998). Whether an intrusion generates extensive mass transfer, or 
is limited to thermal exchanges between an underplated intruder 
and a host mush is thus a key element shaping the outcome of 
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open-system events. A major obstacle to our current understand-
ing of the formation and evolution of igneous bodies is that little 
is known about the architecture of intrusions and controlling phys-
ical parameters.

Traditionally, mush rejuvenation scenarios have been based on 
the results of experiments performed with pure fluids mimicking 
the bulk physical properties (density and viscosity) of the mag-
mas (e.g. Huppert et al., 1986; Jellinek and Kerr, 1999; Snyder and 
Tait, 1995). Mush dynamics, however, differs from that of pure flu-
ids because of the complex rheological feedbacks between melt 
and crystals. An essential physical process is that melt and crystals 
may experience relative motions. Numerical simulations explicitly 
accounting for such decoupled motions as well as the building and 
destruction of force chains between crystals have revealed that 
the local injection of pure melt of the same density and viscos-
ity as the mush interstitial melt easily fluidizes, penetrates, and 
partially mixes with the overlying mush if it is sufficiently vig-
orous. This local unlocking of a mush shows that the conditions 
for efficient mass transfer and mixing are easier to achieve than 
previously thought. Conversely, it is adding constraints on rejuve-
nation scenarios based on the emplacement of an underlying mafic 
gravity current (e.g. Bachmann and Bergantz, 2006; Burgisser and 
Bergantz, 2011) by suggesting that underplating may require con-
trasts in densities and/or viscosities to hinder fluidization.

Our capacity to interpret the various natural expressions of 
open-system events, such as eruptive products containing both the 
intruded magma and the resident mush, is hindered by our partial 
understanding of the architectural end-members of these events, 
such as fluidization or underplating. To characterize the geometry 
and emplacement styles of intrusion events into a residing mush, 
we performed numerical simulations using a combination of fluid 
mechanics and discrete elements (Bergantz et al., 2015; Schleicher 
et al., 2016; Schleicher and Bergantz, 2017; Carrara et al., 2019; 
McIntire et al., 2019; Burgisser et al., 2020). As the dissimilari-
ties between the density and viscosity of the two melts require 
special attention to better characterize the end-member cases of 
open-system events, we explored how these parameters condi-
tion the dynamics of the intruded material when injected into a 
mush. We first introduce the numerical model and the dimension-
less parameters controlling recharge dynamics that are varied in 
the simulations. Results of numerical simulations involving mag-
mas of contrasting physical properties are then presented in the 
framework of the dimensionless parameters. Finally, we relate our 
results to well-documented cases of eruptions triggered by an in-
trusion event.

2. Method

In order to characterize the geometry and emplacement mech-
anism of intrusion in mush accounting for granular dynamics, we 
performed Computational-Fluid-Dynamic and Discrete-Element-
Method (CFD-DEM) numerical simulations by using the MFIX-DEM 
software (https://mfix .netl .doe .gov/). The coupled melt-crystal flow 
is computed solving the mass and momentum conservation equa-
tions with a finite volume method for the melt, and using a 
discrete model including explicitly of particle interactions for the 
crystals. Details about the theory and implementation of the model 
can be found in Garg et al. (2012), Syamlal (1998), Syamlal et 
al. (1993), and validation of the DEM approaches in Garg et al. 
(2012) and Li et al. (2012) (see supplementary information 1 for 
an overview of the numerical model, a discussion about its valid-
ity, and a list of the equations we used).

The computational domain is a 3D medium of 1.6 × 0.8 ×
0.05 m (length × height × width; 128 × 64 × 4 cells) filled with a 
resident mush (Fig. 1). This geometry also allowed us to populate 
the mush with mm-size particles, ensuring that the dimensionless 
Table 1
List of symbols and their meaning.

Symbol (unit) Definition

At Atwood number between the two melts
Atb Bulk Atwood number
E (Pa) Particle Young modulus
Hbed (m) Particle bed thickness
H (m) Intruded layer maximum height above the inlet
H∗ Dimensionless height of the intruded volume
t∗ Reduced time
Uinj (m s−1) Injection superficial velocity
Umf (m s−1) Minimum fluidization superficial velocity
U∗ Dimensionless injection velocity
Winj (m) Injection width
ηi (Pa s) Intruder melt dynamic viscosity
ηh (Pa s) Host melt dynamic viscosity
η∗ Melts dynamic viscosity ratio
μ Particle friction coefficient
ρh (kg m−3) Host melt density
ρi (kg m−3) Intruder melt density
ρp (kg m−3) Density of the particles
σ Poisson coefficient
� Solid volume fraction

numbers describing the nature of the flow and the contrasts be-
tween the physical properties of the two magmas cover the ranges 
found in nature (see Supplementary information 1). We will show 
a posteriori that our particle bed behaves identically to a bed twice 
as thick (Bergantz et al., 2015). Our runs are thus representative of 
an open system event despite the small size of the domain com-
pared to a natural system. We used such geometry instead of a 
two dimensional one to ensure that the build-up and breaking of 
force chains have a sufficient degree of freedom in space to repli-
cate best the mechanics of the granular phase. We created a mush 
layer of ∼0.3 m height with an initial crystal volume fraction of 
∼0.64 by simulating the settling of the particles in a vacuum and 
positioning them at the base of the domain. We used the same 
density for all particles (ρp = 3300 kg m−3) and three different 
diameters (4.5, 5, and 5.5 mm, constituting 25, 50, and 25% of 
the total number of particles, respectively) to avoid artificial self-
organization of the particles in a regular lattice. All simulations 
use the same initial particle bed. A crystal-free magma is injected 
at the base of the mush layer with a superficial vertical veloc-
ity, Uinj , through an inlet having a width, Winj . The density and 
the viscosity of the injected melt are kept constant between all 
the simulations (ρi = 2500 kg m−3; ηi = 1 Pa s, see Table 1, Ta-
ble 2 for the list of the parameters kept constant). We used a 
conduit of 3.2 cm in height to supply the inlet to ensure that the 
intruder enters the mush as a Poiseuille flow. At the top of the do-
main, we used a pressure outflow boundary condition to ensure 
the overall mass conservation within the entire domain, which is 
consistent with an open-system event. The boundary conditions at 
the front and back of the domain are cyclical, which means that 
the intruder corresponds to a dyke having one infinite dimension. 
All the other boundary conditions are non-slip walls (Fig. 1). To 
maintain constant values of melt density and viscosity during the 
runs (and hence constant density and viscosity contrasts), thermal 
effects are ignored. This is consistent with the small dimensions 
of the computational domain that ensure run times shorter than 
those allowing significant heat exchanges (the characteristic time 
to diffuse the heat over 1 cell is ∼400 s and the longest simula-
tions lasts ∼500 s). In each fluid cell, the local melt density and 
viscosity depend linearly on the two end-member properties and 
on their respective concentrations, which are tracked by a trans-
port equation (see Supplementary material 1).

We performed simulations by varying the density and viscosity 
of the host melt. In order to compare simulations, we used dimen-
sionless quantities to scale the effects of the contrasts in densi-
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Fig. 1. Simulations initial condition. [A] The drawing represents the computational domain viewed from the front. The medium is composed by rectangular box, which is fed 
by a conduit at its base. Particles are settled to generate a particle bed having a thickness Hbed. Background colors indicate which fluid is present initially in the computational 
domain. Blue corresponds to the host melt and green to the intruded melt. Red arrows below the conduit represent the velocity profile of the injected fluid (Poiseuille flow). 
Arrows atop the domain indicate that the boundary condition is a fixed pressure outflow. The hatched walls indicate non-slip boundary conditions. [B] Side view of the 
computational domain. The green dashed lines indicate that cyclical boundary conditions are used for these walls. The dotted circles indicate particles overlapping with one 
of the two cyclical boundary conditions and that are also considered to be present on the opposite side. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)
Table 2
Parameters kept constant during the 
parametric study.

Parameter Value or range

ρp 3300 kg m−3

dp 4.5-5.5 mm
Nb crystals 208495
Hbed 0.3 m
Winj 0.1 m
ρi 2500 kg m−3

ηi 1 Pa s
E 2 107 Pa
σ 0.32
μ 0.3

ties and viscosities, and injection velocities. The injection velocity 
and melt viscosity control the stress applied by the input of new 
materials to the mush. These parameters enter the minimum flu-
idization velocity, Umf (Schleicher et al., 2016, see supplementary 
information 2 for derivation of Umf ), which expresses the super-
ficial velocity at which the upward drag force equals the reduced 
weight of the particle bed. This threshold is proportional to the 
density contrast between the particles and the surrounding melt 
and inversely proportional to melt viscosity. As the injected melt 
differs from the host melt, two minimum fluidization velocities can 
be calculated depending on which melt is considered. For all simu-
lations, we used the minimum of these two velocities, which here 
always corresponds to that using the host melt properties. The di-
mensionless injection velocity, U∗ , is defined as:

U∗ = Uinj

Umf
. (1)

In simulations having identical U∗ , the injection imposes the same 
stress to the overlying mush. However, the time needed to inject 
the same new melt volume changes between simulations because 
Umf varies. We thus used a dimensionless time, t∗ , to scale the 
simulation time (Bergantz et al., 2017):

t∗ = tUinj
, (2)
Hbed
where t is the simulation time. In this way, simulations having 
identical t∗ implies that the same volumes of intruder have been 
injected until that dimensionless time and simulation results can 
be compared directly. We use the Atwood number to scale the 
density contrast between the two materials. Here, two Atwood 
numbers may be defined. The first one, At , expresses the buoy-
ancy contrast between the two melts:

At = ρi − ρh

ρi + ρh
, (3)

where ρi is the density of the intruded melt, and ρh is the host 
melt density. The second one, Atb , takes the presence of crystals 
in the host material into account and scales the bulk densities (the 
weight of material including crystals and melt per unit of volume):

Atb = ρi − (ρh(1 − �) + ρp�)

ρi + (ρh(1 − �) + ρp�)
, (4)

where � is the particle volume fraction. A negative Atwood num-
ber indicates that the intruder is buoyant compared to the mush, 
whereas a positive one indicates a tendency to sink. The viscosity 
contrast, η∗ , between the two melts is expressed as:

η∗ = ηh

ηi
, (5)

where ηh is the host dynamic viscosity and ηi is that of the in-
jected melt.

3. Results

We performed 25 numerical simulations to explore the influ-
ence of the host melt density and viscosity (see Table 3 for a list 
of all the simulations and corresponding parameters). For these 
simulations, the injection velocities are such that the ratio with 
the respective minimum fluidization velocity, U∗ , remains constant 
at U∗ = 21.2. This ratio is chosen to match that used previously 
in similar works (Schleicher et al., 2016; Schleicher and Bergantz, 
2017) according to the formula presented in the supplementary 
material 2. We performed an additional 4 simulations at higher 
injection velocities to explore the effect of U∗ on intrusion dy-
namics.
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Table 3
List of the simulation performed for this study and corresponding variables.

Run nb. ρh ρb (host) At Atb ηh Umf Uinj

(kg m−3) (kg m−3) (Pa s) (m s−1) (m s−1)

A1 2500 3012 0 −0,151 1 2.956 10−4 6.268 10−3

A2 2500 3012 0 −0,151 5 5.913 10−5 1.254 10−3

A3 2500 3012 0 −0,151 10 2.957 10−5 6.268 10−4

A4 2500 3012 0 −0,151 50 5.913 10−6 1.254 10−4

A5 2500 3012 0 −0,151 100 2.957 10−6 6.268 10−5

A6 2450 2994 1.0 10−2 −0,146 1 3.141 10−4 6.660 10−3

A7 2450 2994 1.0 10−2 −0,146 5 6.283 10−5 1.332 10−3

A8 2450 2994 1.0 10−2 −0,146 10 3.141 10−5 6.660 10−4

A9 2450 2994 1.0 10−2 −0,146 50 6.283 10−6 1.332 10−4

A10 2450 2994 1.0 10−2 −0,146 100 3.141 10−6 6.660 10−5

A11 2550 3030 −9.9 10−3 −0,155 1 2.772 10−4 5.876 10−3

A12 2550 3030 −9.9 10−3 −0,155 5 5.544 10−5 1.175 10−3

A13 2550 3030 −9.9 10−3 −0,155 10 2.772 10−5 5.876 10−4

A14 2550 3030 −9.9 10−3 −0,155 50 5.544 10−6 1.175 10−4

A15 2550 3030 −9.9 10−3 −0,155 100 2.772 10−6 5.876 10−5

A16 2200 2904 6.4 10−2 −0,123 1 4.065 10−4 8.618 10−3

A17 2200 2904 6.4 10−2 −0,123 5 8.130 10−5 1.724 10−3

A18 2200 2904 6.4 10−2 −0,123 10 4.065 10−5 8.618 10−4

A19 2200 2904 6.4 10−2 −0,123 50 8.130 10−6 1.724 10−4

A20 2200 2904 6.4 10−2 −0,123 100 4.065 10−6 8.618 10−5

A21 2150 2886 7.5 10−2 −0,118 1 4.250 10−4 9.010 10−3

A22 2150 2886 7.5 10−2 −0,118 5 8.500 10−4 1.802 10−3

A23 2150 2886 7.5 10−2 −0,118 10 4.250 10−5 9.010 10−4

A24 2150 2886 7.5 10−2 −0,118 50 8.500 10−6 1.802 10−4

A25 2150 2886 7.5 10−2 −0,118 100 4.250 10−6 9.010 10−5

B1 2150 2886 7.5 10−2 −0,118 100 4.250 10−6 4.250 10−3

B2 2150 2886 7.5 10−2 −0,118 100 4.250 10−6 4.250 10−2

B3 2150 2886 7.5 10−2 −0,118 100 4.250 10−6 4.250 10−1

B4 2150 2886 7.5 10−2 −0,118 100 4.250 10−6 4.250 100
Fig. 2. Regime diagram of intrusion behavior for U∗ = 21.2. The diagram represents 
the positions of the simulations A1–25 as functions of the Atwood numbers (ab-
scissa) and viscosity ratios (ordinate). Each square represents a simulation. Square 
colors depend on the observed regime (blue = rising; black = fluidization; red = lat-
eral spreading). The vertical dashed line interpolates where the fluidization is ex-
pected to prevail.

Fig. 2 plots the simulations at the lowest U∗ , 21.2, as functions 
of the dimensionless quantities At , Atb , and η∗ . It shows that the 
intrusions can be classified in three regimes as a function of the 
Atwood number between the two melts, At . When ρi = ρh , the 
fluidization regime is observed. If ρi > ρh , the spreading regime 
occurs, whereas if ρi < ρh , the rising regime occurs (see next para-
graph for a detailed description of the regime dynamics). The bulk 
Atwood number Atb is always negative and the regime transition 
occurs at a value (−0.151) of no particular physical significance. 
The three regimes do no depend on the viscosity contrast η∗ .

The fluidization regime was observed in the simulations once 
ρi = ρh , and consists in the development of a fluidized area above 
the inlet in which the intruded melt rises through the mush 
(Fig. 3A–C), as described previously (Bergantz et al., 2015; Schle-
icher et al., 2016). The fluidization of the mush is initiated by the 
dilation of the crystal framework to crystal volume fraction below 
0.3 above the inlet that locally destabilizes the forces chains net-
work that supports the bed and separates the crystals in contact. 
The fluidized volume grows vertically above the inlet because of 
two mechanisms. The first is the upward entrainment of the par-
ticles localized above the fluidized cavity, which results in bulging 
the top surface of the mush layer (Fig. 3A–C). The second mech-
anism is the progressive erosion of the crystals jammed at the 
boundary between the mush and the fluidized volume. Once sep-
arated, crystals start settling in the fluidized area because of this 
process of mush erosion, causing the fluidized area to ascend faster 
than the intruded melt (green outline in Fig. 3A–C). The intruder 
flows mainly vertically with a minor lateral porous flow. When the 
fluidized cavity reaches the top of the particle bed, its width pro-
gressively decreases to stabilize in the shape of a vertical chimney. 
At steady state, when t∗ > 1, the crystals located within the chim-
ney show both upward and downward motions whereas the ones 
located around the chimney flow slowly in the direction of the 
inlet, forming a ‘mixing bowl’ as a whole, fully recovering the dy-
namics first described in Bergantz et al. (2015).

The spreading regime, which prevails in simulations once ρi >

ρh , is characterized by the lateral spreading of the injected melt 
similarly to a gravity current hugging the floor of the host reservoir 
(Fig. 3D–F). The main difference with a pure fluid gravity current 
is that the melt is progressively flowing across the mush as per-
meable flow. At the start of the injection, the crystal framework 
experienced a dilation, which initiates host crystals settling in the 
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Fig. 3. Comparison of the effects of buoyancy and viscosity contrasts. Each section represents the advancement of the simulation at t∗ = 1 (or when the rising instability is 
above the particle bed). The injected melt contours are indicated with green curves. The dashed black arrows indicate the presence and direction of granular flows. The thin 
white curves indicate the fluid streamlines with small arrowheads indicating flow direction.
same fashion as in the fluidization regime. The lateral flow of the 
intruded melt is able to laterally entrain the host crystals, creat-
ing two counter rotating granular vortexes in the residing mush 
with downward motions above the inlet (Fig. 3D–F). Such granu-
lar vorticity affects the flow pattern of the fluid in the mush. The 
fluidized volume grows either predominantly laterally or vertically, 
depending on the relative importance between the lateral entrain-
ment of the host solids by the intruder and the vertical settling of 
the mush crystals. As the lateral propagation of the intruder pro-
gresses, so does the size of the two granular vortexes, making this 
style of intrusion affect a larger mush volume than the fluidization
regime.

The rising regime (Fig. 3G–I), is characterized by the ascent of 
the intruded melt within the mush that occurred in simulations 
once ρi < ρh . Runs start with the initial growth above the in-
let of a cavity filled with the intruded fluid. The cavity becomes 
gravitationally unstable and ascends within the mush, forming a 
Rayleigh-Taylor instability. The ascent of the intruder continues 
above the particle bed, entraining solids from the host. The in-
stability is driven by its head because of the buoyant batch of 
intruded melt. This driving batch is surrounded by a volume of flu-
idized host mush (Fig. 3G–I, better seen in Supplementary Movie 
3 as the absence of particle overlap). The dimensionless time at 
which the intrusion reaches the mush top (t∗ ∼ 0.3) is shorter than 
that of the two other regimes because the Rayleigh-Taylor instabil-
ity significantly accelerates the transport of the intruder.

Fig. 2 suggests that the viscosity contrast does not control the 
end-member shape of the intruder flow. Larger viscosity contrasts, 
however, increase the trends of some aspects of mush dynamics. 
Fig. 3 illustrates how viscosity bears on flow patterns.

In the fluidization regime, the increase of the host viscosity en-
hances the formation of crystal-poor batches at the top of the 
intruded volume (Fig. 3A–C). Because the minimum fluidization 
velocity within the intruded melt is higher than for the host, the 
crystals are not fluidized and sediment in the intruded melt to ac-
cumulate atop the inlet (Fig. 3B–C). Because we defined t∗ to scale 
the dynamics of the mush, the increase of the host melt viscos-
ity decreases the injection velocity and increases the duration, t , 
required to reach the dimensionless time t∗ = 1. As a result, in-
creasing melt viscosity decreases the ability for the intruded melt 
to experience lateral porous flow through the host crystal frame-
works (Fig. 3B–C). It also increases the ratio between crystal ter-
minal velocity in the intruded and host melts, which results in the 
formation of the crystal poor volume at the top of the intruded 
volume (Fig. 3B–C). The increase in the host melt viscosity, how-
ever, does not affect the volume of mush inflated by the injection 
and showing distortion of the force chains.

In the spreading regime, high viscosity contrasts enhance the 
lateral spreading of the intruder and the entrainment of the host 
crystals in the two counter rotating vortexes (Fig. 3E–F). Large host 
melt viscosity causes the lateral entrainment of the solids to be 
more efficient than particle settling, which results in the elon-
gation of the fluidized volume in the horizontal direction. In the 
same fashion as in the fluidization regime, the lower superficial in-
jection rate diminishes the ability of the lateral flow to entrain 
particles, which increases the number of host crystals present in 
the intruded layer. This effect is expressed by the decrease of the 
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Fig. 4. Evolution of the height, H∗ , of the intruded volume as a function of the dimensionless time t∗ . Each square represents the height of the top of the intruded volume 
measured in the simulations. Square colors indicate injection rate. Dashed lines indicate the theoretical intruder front height evolution in the case of vertical propagation 
(supplementary information 3) The black curve is the theoretical front height for a radial growth, and the horizontal dotted lines indicate the front height evolution during 
lateral spreading. The three insets illustrate intrusion behaviors.
thickness of the intruded layer with the increase of the host viscos-
ity (Fig. 3D–F). It results that reaching the same volume of mush 
entrained by the intrusion requires less intruded material as the 
viscosity of the host melt increases.

In the rising regime, increasing the viscosity contrast enlarges 
the vortexes sizes and the separation distance between their cen-
ters (Fig. 3G–I). The dimensionless time, t∗ , at which the intruder 
instability occurs decreases with the viscosity of the host. The vol-
ume of the intruded melt driving the Rayleigh-Taylor instabilities is 
lower when a viscosity contrast exists. When a viscosity contrast 
is present, the volume of the intruded melt driving the instabil-
ity does not vary significantly (Fig. 3H–I). The greater thickness 
of the intruder when the Rayleigh-Taylor instability significantly 
accelerates can be explained by considering the ratio between 
the dimensional injection rate and Rayleigh-Taylor growth rate. In 
Fig. 3G, this ratio is higher than in Fig. 3H–I, and a significant vol-
ume of fluid is injected before the instability accelerates. On the 
contrary, in Fig. 3H–I, this ratio is small and so is the amount of 
melt injected before the acceleration of the instability. However, 
the volume of the mush remobilized by the intruder flow does not 
significantly vary with the host melt viscosity (Fig. 3G–I).

The additional 4 simulations in the spreading regime suggest 
that buoyancy effects dominate the intruder flow up to U∗ 105. 
Fig. 4 shows the temporal evolution of the dimensionless height 
reached by the intruded volume, H∗ (H∗ = H/Hbed, where H is 
the maximum height of the intrusion), as a function of injection 
rate. All injections grow purely vertically at first (t∗ ≤ 0.1). As seen 
above, at the low injection rate of 21.2, the intrusion stalls rapidly 
and spreads laterally (simulation A25, Fig. 4). Increasing the injec-
tion rate causes stalling to occur later and higher. When t∗ > 0.2, 
injection growth switches from vertical to radial. When U∗ > 105, 
the behavior of the intruder is dominated by the injection rate, 
which causes the radially growing intrusion to reach the top of 
the bed at H∗ = 1. Despite that all simulations have the same in-
truder shape before stalling, the size of the region surrounding the 
intruder that is affected by dilatancy increases with U∗ . The high-
est injection rate (simulation B4 with U∗ = 106) strictly follows 
the theoretical curve for a radial growth and reaches H∗ = 1 at 
t∗ ≈ 2.5, as predicted by geometrical arguments (supplementary 
information 3).

Mush dilation is key for permeable melt flow to occur. The ini-
tiation of the intrusion increases the pore pressure in the mush 
around the inlet (Fig. 5A). This overpressure progressively propa-
gates outwards and decreases the crystal volume fraction in the 
overlying mush (Fig. 5B). As the intrusion propagates, the effect 
of the overpressure is supplemented with the Reynolds dilatancy 
generated by the granular vortexes in the mush (Fig. 5C). The dila-
tion of the solid framework increases its permeability and in turn 
the possibility of relative motion between the crystals and the in-
terstitial melt (Fig. 5C). This phenomenon is particularly clear in 
the case of the rising regime. The intruder is surrounded by a vol-
ume of mush that underwent such dilation that it is in the dilute 
regime. The contact region between the two magmas is dominated 
by melt–melt interface interspersed with isolated crystals. As a re-
sult, entrainment is ruled by melt vorticity.

4. Comparison with natural systems

To test the applicability of our results to natural cases, we gath-
ered from the literature the physical parameters of 13 eruptions 
involving the intrusion of new magma (Table S3–S4 in the supple-
mentary information 5). All host magmas are well-characterized 
but for a few cases for which there is ambiguity on the respec-
tive roles of the intruder and host magmas (Unzen, Minoan, and 
Katmai–Novarupta). In the studies surveyed, melt viscosity and 
melt density of host magmas were most often directly determined 
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Fig. 5. Evolution of the pore pressure and crystal volume fraction. On each inset, the 
color depend on the difference between the local crystal volume fraction, �, and 
the maximum one, �max (�max = 0.64), in a logarithmic scale. The overpressure 
with respect to the initial hydrostatic pressure field is indicated with contour that 
corresponds to the isosurfaces where the overpressure are equal to 5, 25, 50, and 
100 Pa. The pink dashed curves represent the boundary between the injected and 
resident melt. Inset [A] and [B] are captured after 1 s and 6 s. Both only displayed 
the portion of the mush layer that present overpressure and dilation. Inset [C] is 
acquired after 45 s and cover a slice of the entire computational domain. The two 
dashed rectangle indicate the extent of insets [A] and [B].

from eruptive products and pre-eruptive conditions such as pres-
sure, temperature, and melt water content (details on how pa-
rameters were obtained are in Table S3–S4 (see supplementary 
information 5)).

Cases are organized into three categories depending on the ob-
served eruptive sequence. In the first category, the intruder was 
erupted first, followed by the emission of host magma or a mix-
ture of host and intruder. This category implies that the intruder 
magma was able to efficiently penetrate and pass through the host 
magma. In the second category, both host and intruder magmas 
were erupted simultaneously, with the intruder most often form-
ing enclaves or mingling structures. The last category feature cases 
where the mixing was so thorough that the eruptive products only 
bear cryptic traces of the intruder, such as isolated intruder crys-
tals floating in the host or crystal disequilibrium textures.

Fig. 6A shows the ratios of bulk viscosities and bulk densities 
between the intruder magma and the host magma(s) for the 13 
eruptions. Fig. 6A contains two physically meaningful thresholds, 
that of neutral buoyancy at the bulk density ratio of 0 and that of 
equal viscosity at the bulk viscosity ratio of one. The three types 
of eruptive sequence are not sorted following any of these thresh-
olds. Fig. 6B shows the same eruptions plotted as functions of melt 
properties instead of bulk properties. Our numerical runs cover the 
full range of natural density ratios and a more restricted range of 
viscosity ratios (from 1 to 102 vs. 10−2 to 104 in nature). Fig. 6B 
also shows the dividing line between rising and spreading dynam-
ics at the level of neutral buoyancy with respect to the melts. With 
the possible exception of the 1912 Katmai–Novarupta eruption (see 
Discussion), the rising regime is populated by the eruptions that 
first ejected intruder material. This divide between cases where 
at least some of the intruder magma had the capacity to go un-
scathed through the host and cases where none of it escaped from 
host interaction is consistent with our numerical results.

5. Discussion

Our results are helpful to predict the behavior of an intrusion 
within a mush. The Atwood number between the two melts, At , 
is the parameter having a first order control on the geometry of 
the intrusion. On the contrary, the commonly used level of neutral 
bulk buoyancy (e.g. Huppert et al., 1986; Snyder and Tait, 1995) 
does not mark any particular change in dynamic behavior (Fig. 2). 
This result illustrates that the relative motion between the solids 
and surrounding melt is of primary importance when studying 
mush processes. Experiments, or numerical simulations, that ac-
count of the presence of the solids or exsolved volatiles as discrete 
entities (e.g. Barth et al., 2019; Bergantz et al., 2015; Burgisser et 
al., 2020; Carrara et al., 2019; Girard and Stix, 2009; Hodge et al., 
2012; McIntire et al., 2019; Michioka and Sumita, 2005; Parmi-
giani et al., 2014; Schleicher et al., 2016; Schleicher and Bergantz, 
2017) are the most likely to faithfully reproduce mush dynam-
ics. Neglecting phase decoupling by considering the magma as a 
single-phase fluid having effective properties such as bulk density 
or bulk viscosity will not capture the blending of crystal contents 
between host and intruder and the simultaneous but independent 
evolution of the melt–melt interface (Fig. 5C).

The decoupling between the motions of the two phases results 
from processes unique to granular mechanics that our discrete nu-
merical model is able to capture. Mush dilation causes entrainment 
by melt vorticity alone (Fig. 5). Efficient entrainment of two flu-
ids with a viscosity contrast occurs only when the most viscous 
fluid bears large levels of vorticity (Jellinek and Kerr, 1999). In 
our runs, the intruder melt viscosity is equal or less than that of 
the host, and the vorticity is concentrated close to or inside the 
intrusion (Fig. S4 in the supplementary information 4). This situ-
ation yields the weak entrainment observed in the rising regime 
and the transition from vertical growth to spreading of the intru-
sion melt as injection velocity decreases (Fig. 4). The concept of 
bulk density thus fails to predict the intrusion geometry for two 
reasons. First, it assumes the absence of relative motion and thus 
ignores the transfer of crystals from host to intrusion. Second, in 
cases when sufficient mush dilation occurs, entrainment is con-
trolled by the melt–melt interface and the associated density and 
viscosity contrasts. The interplay between pore pressure, dilation, 
melt interface dynamics, and permeable flow controls the trans-
port of mass within our modeled magmatic reservoir.

We characterized the parameter ranges of a series of well-
documented cases of eruptions that features magma mixing, fo-
cusing on the densities and viscosities of the two end-member 
magmas involved and on the order of the eruptive sequence. One 
case, Katmai, straddles two eruptive sequence categories because 
the intruders may have been transported alongside (as opposed to 
through) the host magmas. Both scenarios are close to the neutral 
buoyancy level (Fig. 6B) and each individual scenario is consistent 
with our regimes. The Katmai eruption first emitted rhyolite. The 
Katmai scenario corresponding to a rhyolite intruding a more mafic 
host (Eichelberger and Izbekov, 2000) is consistent with it being 
located in the rising regime. In the other scenario (Singer et al., 
2016), the rhyolite is part of the host reservoir, which is consistent 
with that scenario being in the spreading regime. The overall good 
agreement between the observed eruptive sequences and our nu-
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Fig. 6. Ratios of physical properties for the host and intruder magmas involved in 13 eruptions. Viscosity ratios are that of the host over that of the intruder and the density 
ratios are measured by the Atwood numbers. Eruptions are sorted according to whether the intruder magma was erupted first (“First”), at the same time as (or mixed with) 
the host (“Together”), or fully mixed with the host (“Cryptic”). [A] Ratios of bulk properties. [B] Ratios of melt properties. The gray area covers the runs done in this study 
and the circle marks the parameters used in the numerical study of Bergantz et al. (2015). See text for details regarding the special case of Unzen.
merical results (Fig. 6B) supports the fact that open-system events 
are, to first order, controlled by the density contrast between the 
melt phases of the intrusion and mush. It also suggests that injec-
tion momentum was quickly exhausted, letting buoyancy control 
the unfolding of the event.

One special natural case can be evaluated against our dynamic 
regimes. The intruder of the 1991–1995 eruption of Unzen volcano 
could have been either andesitic (Holtz et al., 2005), or basaltic 
(Browne et al., 2006). Regardless of its composition, the intrusion 
caused thorough mixing and the first magma erupted was the 
product of this mixing. If the intruder was basaltic, it was buoy-
ant with respect to the felsic host and if it was andesitic, it was 
denser that the host. As a result, Unzen spans the divide between 
the rising and spreading regime (Fig. 6B). Considering that the in-
truder input was large (>30 wt% of the eruptive products; Holtz 
et al., 2005), and if any credit is given to our inferences, the in-
truder was more likely to be andesitic than basaltic because this 
latter composition would have been prone to preserve its integrity 
while going through the host mush, erupting first.

6. Conclusions

This study highlights the importance of granular mechanics in 
mush processes, which differ significantly from ones expected with 
purely fluid models. As expected, our simulations show that when 
the injection velocity is high (U∗ > 105), intrusion dynamics is 
dominated by the injection momentum and the intruded cavities 
grow radially. When the injection velocity is below this threshold, 
however, buoyancy controls the behavior of the intruder in an un-
expected way. Bulk buoyancy contrasts appear to play no role in 
the way the intruder flows. Instead, the density contrast between 
the host and intruded melts exerts a first-order control on the ar-
chitecture of an intrusion event in a mush. When the two melt 
densities are identical, the intruder fluidizes the mush and cre-
ates a mixing bowl, as described in Bergantz et al. (2015). When 
the intruded melt is lighter than that of the host, it rises through 
the mush. Mush dilation around the intruder causes the contact 
region between the two magmas to be dominated by melt–melt 
interface interspersed with isolated crystals. Entrainment in this 
rising regime is ruled by the amount of vorticity of the most vis-
cous melt. As in our runs the intruder melt viscosity was equal or 
lower than that of the host, no entrainment was observed. Intruder 
melts denser than the host spread laterally partly as permeable 
flows through the host mush. The lateral spreading of the intruder 
generates two counter rotating granular vortexes with downward 
motions above the inlet, which maximizes the volume of the mush 
entrained by the gravity current. In this spreading regime, the 
combined effects of the initial pore overpressure at the inlet and 
the Reynolds dilatancy resulting from the lateral spreading of the 
intruder are able to fluidize the overlying mush.

We tested whether the first-order effect of melt density con-
trast was expressed in nature. We tallied 13 well-documented 
eruptive sequences, classifying them according to the expected 
outcomes of the three dynamic regimes we defined. We found 
overall good agreement between eruption sequences and our 
model predictions, which suggests that pore pressure, dilatancy, 
and permeable flow play a fundamental role in the unfolding of 
open-system events. Granular dynamics and the decoupling of 
melt and crystals are thus key in shaping reservoir and volcanic 
processes.
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Supplementary Information 1:

This supplementary material presents an overview of the numerical model (Garg et al, 2012;

Syamlal,  1998; Syamlal  et  al.  1993).  After  presenting the method of  solution,  we compare the

magmas physical properties used in the simulations against the range expected in natural magmatic

reservoirs.  We next validate the ability of the numerical model to model the flow and possible

mixing  between  two  miscible  fluids  and  discuss  validity  limits.  Finally,  the  last  part  lists  the

equations used in the numerical model.

S1.A Overview of the numerical model

For the two miscible fluid phases, the equation system comprises the mass and momentum

conservations. We used two constitutive equations to link the local melt density and viscosity as a

function  of  the  local  composition  in  host  and  injected  fluids.  The  mass  conservation  for  an

uncompressible fluid in a multiphase flow is (Ishii and Hibiki, 2011):

∂ (1−Φ )

∂ t
+∇ ∙ ( (1− Φ) u )=0, (S1.1)

where  Φ is  the  solid  volume  fraction,  and  u is  the  fluid  velocity  vector.  The  momentum

conservation is:

ρ f

D (1− Φ ) u
Dt

=−∇ ∙ ( (1− Φ ) P )+∇ ∙σ v+(1−Φ ) ρf g+ I fs, (S1.2)

where  ρf is  the  fluid  density,  P is  the  pressure,  σv is  the  fluid  viscous  stress  tensor,  g is  the

gravitational acceleration vector,  D/Dt is the material derivative operator,  and Ifs is the fluid-solid

momentum exchange vector. The fluid stress tensor is:

σ v=2 η (1 −Φ ) ϵ f −
2
3

η (1 −Φ ) tr (ϵ f ) δij. (S1.3)

where η is the dynamic viscosity of the fluid, δij is the Kronecker delta, and ϵf is the fluid strain rate

tensor computed as:

ϵ f=
1
2

(∇u+ (∇u )
T ). (S1.4)

As we have two fluids having distinct densities and viscosities in our simulations, the local

melt  density  and viscosity  is  computed  as  function  of  the  local  concentration  in  host,  Ch,  and

injected, Ci, fluids as:

C h+Ci=1 (S1.5)

η=ηh Ch+ηi C i (S1.6)

ρ f=ρhCh+ ρiC i (S1.7)
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The transport equation of the concentration in host and intruded fluids is:

∂C i

∂ t
− u ∙∇Ci=0 (S1.8)

Crystal

motions were computed by solving the Newton’s second laws of motions. Translational motions are

governed by:

m
d v
dt

=∑ FC+F fs+m g, (S1.9)

where, v is the crystal velocity vector, Fc represents the contact force vector, Ffs is the momentum

exchange force, and m is the crystal mass. The sum on the right-hand side expresses the summation

over all the particles in contact with the particle traveling at v. Rotational motion are given by:

I
d ω
dt

=∑ TC, (S1.10) 

where  I is  the crystal  moment of inertia,  ω is  the crystal  rotation vector,  and  Tc represents the

contact torque.

Contacts  are  modeled  with a  soft  sphere  approach  (Tsuji  et  al.,  1993),  which is  a  spring-

dashpot model, meaning that only a part of the energy is conserved whereas the rest is dissipated

during a contact. The total contact force between two crystals may be split in normal (collision),

FC
n, and tangential (friction) components, FC

t. The total collisional force, FC, is then expressed as:

FC=FC
n
+FC

t. (S1.11)

The collisional torque involves the distance between each particle center of mass and contact point,

L: 

TC=L ηc∧FC
t, (S1.12)

where ηc is the unit vector between the centers of mass of the two crystals in contact. 

The normal contact force between two particles is expressed as:

FC
n
=Fn

S+Fn
D. (S1.13)

The first term on the right hand side of Eq. S1.13 is the conservative part of the contact force

(spring),  Fn
S,  and the second one the dissipative part  (dashpot),  Fn

D.  The conservative part  is a

function of the overlap distance between the two particles, δ n , and of the spring coefficient, k n:

Fn
S=−k nδ n ηc, (S1.14)

2



The  contribution  of  the  normal  dissipative  contact  depends  on  the  normal  dashpot  coefficient

between the two particles, ηn, which is function of the normal restitution coefficient, and the normal

relative velocity between the particles, which is computed by projecting the total relative velocity

vector between the two particles at the contact point, V s, on the unit vector ηc:

Fn
D=ηn (V s ∙ηc) ηc. (S1.15)

Similarly  to  the  normal  contacts,  the  tangential  force  may  be  split  in  conservative  and

dissipative terms: 

FC
t
=Ft

S+F t
D . (S1.16)

The first term on the right hand side is the conservative part of the tangential contact force (spring),

and the second one is the dissipative part (dashpot). There are two ways to express the tangential

spring,  depending  on  the  frictional  state  of  the  particle  contact,  which  can  be  either  static  or

dynamic. The static friction spring term is:

Ft
S=−k t δ t, (S1.17)

where k t is the tangential spring coefficient, and δt is the accumulated tangential displacement. The

cumulated tangential displacement is computed during the ‘static’ frictional contact as:

δt= ∫
static

∂ δt

∂ t
dt . (S1.18)

To track the occurrence of tangential sliding (dynamic friction), a Mohr-Coulomb criterion is used.

It assumes that the sliding occurs when the magnitude of the static tangential forces overcomes a

threshold, that depends on the normal contact force Fc
n and particles friction coefficient, μs. Sliding

is assumed to occur when:

‖Ft
S‖>μs‖FC

n‖. (S1.19)

During sliding, the tangential force is given by:

‖Ft
S‖=μs‖FC

n‖t, (S1.20)

where, t  is the tangential contact unit vector. When sliding occurs, the incremental evolution of the

tangential displacement follows:

δt=
μs kn δ n

k t

t. (S1.21)

The tangential dashpot contribution is:

FD
t
=ηt (V s− (V s ∙ ηc) ηc), (S1.22)

where ηt is the tangential dashpot coefficient.
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The total force exerted by the fluid to the solids includes both steady and unsteady terms: 

F fs=FP+FD+FVM+FB. (S1.23)

where, FP is the pressure force vector, FD is the viscous drag force vector, FVM is the virtual mass

force vector, and  FB is the Basset force vector. The first force describes the effect of the fluid

pressure gradient. The drag expresses the steady viscous forces applied by the fluid on the particles

(or  vice  versa)  because  of  their  relative  motions.  The two last  forces  are  unsteady terms  only

important in transient dynamics that may be neglected in many cases including magma simulations

(Burgisser et al, 2005). They both depend on the relative acceleration between the particles and the

fluid. The virtual mass describes the effect of the force needed to move a volume of fluid when a

particle  is  accelerating.  The  Basset  term  expresses  the  effect  of  the  variation  of  the  viscous

boundary layer thickness (distance over which the fluid flow is affected by the presence of the

particle).  Neglecting the unsteady forces reduces  the momentum transfer  force to  the drag and

pressure terms:

FP+FD=−( π
6

d p
3)∇P −

β
(1 −Φ ) (

π
6

d p
3)( v −u ), (S1.24)

where β is the momentum transfer coefficient, and dp is the particle diameter. The pressure gradient

may be decomposed in its hydrostatic and dynamic components. The dynamic part of the pressure

forcce depends on the fluid motion. The hydrostatic pressure force is:

FPstatic=
− π
6

d p
3 ρf g, (S1.25)

which corresponds to the Archimedes force. The drag coefficient is computed with the Gidaspow

drag model, which presents the advantage to be valid over a wide range of concentrations in solids:

β={
3
4

CD

ρf Φ (1− Φ)‖u− v‖
d p

(1−Φ )
− 2.65     if Φ≤ 0.2

150Φ2η
(1− Φ) d p

2
+

1.75 ρf Φ‖u − v‖
d p

              if Φ>0.2

 . (S1.26)

In  equation  S1.26,  the  upper  line  corresponds to  the  Wen-Yu drag  coefficient  and is  valid  for

particle volume fractions below 0.2. Above 0.2, the Ergun law gives the coefficient of momentum

transfer between the fluid and the particles, which is composed of two terms. The first corresponds

to the viscous part and is given by a Kozeny-Carman relationship describing the viscous flow at low

particle Reynolds numbers,  Rep.  The second is the inertial  term, which depends on the relative

velocity between the two phases and comes from a Burke-Plummer equation, describing the fluid
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kinetics at high  Rep.  The Wen-Yu drag model requires to estimate the drag coefficient,  CD,  for

which empirical relationships exist with Rep:

CD={
24

Re p
(1+0.15 Rep

0.687
)

0.44
, (S1.27)

Rep=
dp‖u− v‖ρf

η
. (S1.28)

In case of viscous magmas  Rep<1 and CD=24 /Re p. Because of the Newton’s third law, the drag

force  exerted  by  the  fluid  on  the  particles  must  be  taken  into  account  within  the  interphases

momentum  transfer  term  in  Eq.  S1.2.  The  different  numerical  representations  of  the  phases

(Eulerian and Langrangian) impose at the drag force at the particle scale must be averaged in space

to the fluid scale over a volume vREV. This is also why the drag is a function of  ϕ and involves a

Kozeny-Carman relationship in Eq. (S1.26). Such parameterized drag takes into account the effect

of the neighboring particles on the tortuosity of the fluid flow at high particle volume fraction by

averaging the drag at the scale of the small particle aggregate contained in  vREV. The fluid-solid

momentum exchange term may be expressed as:

I fs=
1
ν∑ ( β ( π

6
d p

3)
(1−Φ )

(u − v ) K ν ( X , X f )), (S1.29)

with K ν being a generic kernel indicating the contribution of a particle located at a position X  to a

fluid grid node located at the position X f . The sum on the right hand side of Eq. S1.29 expresses the

sum over all the particles comprised in the cells containing the fluid grid node located at Xf.

To solve the fluid constitutive equations, MFIX-DEM uses the finite volume method and the

SIMPLE (Semi-Implicit Method Linked Equations) algorithm  (Patankar, 1980). It is an iterative

method based on successive corrections of fluid velocities and pressure field. It uses a staggered

grid in which fluid pressure and velocities are stored at different positions in order to avoid the

convergence to checkerboard pressure fields. An overview of the algorithm steps is presented here.

For  a  detailed  presentation  of  the  discretization  of  the  constitutive  equations  and  algorithm

operations,  see  Patankar,  1980,  and  Syamlal,  1998.  For  each  fluid  time  step,  the  algorithm

operations are:

i: Update the fluid physical properties.  Equations. S1.6 and S1.7 are used to compute the new

densities and  viscosities of the fluid according to the respective concentrations of the two melts.
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ii. The velocity and pressure gradients are computed from the results of the previous iteration or

time step (for the first iteration). 

iii. The momentum equation (Eq. S1.2) is solved to compute a new velocity field with the pressure

field from the previous iteration, (or a guessed one for the first solver’s iteration). Note that the

estimated velocity field  generally does not respect the  continuity equation (Eq. S1.1).

iv. The mass fluxes at each face of the control volumes are updated with the new fluid velocities

field computed at step 3.

v. A fluid pressure correction is computed in order to obtain a pressure field satisfying the continuity

equation (Eq. S1.1). 

vi. The fluid pressure field is updated with the pressure correction from step 5. 

vii.  A fluid velocity correction is computed from the new pressure field.

viii. The total dynamic residual is computed by summing those of steps 3 and 5.

ix. If the total residual is below a threshold, the time step is considered as having converged and the

fluid velocity, pressure, and temperature fields are used to compute the solids dynamics in the DEM

part.  If  the total  residual  is  above the threshold and converges (i.e.  is  smaller  than that  of the

previous iteration), the algorithm restarts from step 2 with the fluid properties computed during the

present iteration. If any residual diverges, the fluid time increment is reduced and the iteration is

restarted from step 1 with the fluid properties from the previous time step.

Computing the particle motion requires one to integrate in time their accelerations given by

Eqs.  1.8  and  1.9  and  update  their  velocities  and  positions.  For  that,  a  first-order  Euler  time

integration scheme is used (Gear, 1971). We also tested a second order scheme (Adams Bashforth)

that we left aside because it did not change model outputs appreciably. The integral in time of the

particles acceleration is thus approximated by:

v (t +∆ t )=v (t )+
∑ ( Fc )+F fs+m g

m
∆ t . (S1.30)

The positions of the particles are updated with:

X (t+∆ t )=X (t )+∆ t v (t+∆ t ), (S1.31)

where ∆ t solid is the DEM time step. For the particle rotation, the Euler time integration is:

ω (t+∆ t )=ω (t )+
∑T c

I s

∆t . (S1.32)

To ensure stability of the simulations, the classical DEM integration scheme imposes to use 

time steps shorter than the characteristic duration of the physical processes controlling the crystal 
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motions, which are here contact durations and drag characteristic time. When increasing melt 

viscosity, the particle viscous response time, τ v (time for the particle to adapt to changes in the fluid 

velocity) decreases, which results in short DEM time steps and impractically long computations. To 

accelerate the discrete model, we used the same approach as Burgisser et al. (2020) because the 

flows simulated are in the laminar regime and the particle Reynolds numbers are also well below 

the transition to turbulence (Furuichi and Nishiura, 2014). In the absence of particle contacts, the 

equation of motion for the solids reads:

d v
dt

=
−∇P

ρc

+g+
β

Φ ρp

(u − v ), (S1.33)

Similarly to Bergantz et al. (2017), the particle response time is defined as τ v=Φ ρp /β. At low 

Reynolds and Stokes numbers, τ v is shorter than the fluid characteristic time, which means that the 

fluid velocity and pressure gradient within Eq. (S1.33) may be considered constant during the 

acceleration of the particle in response to a change in its environment. Consequently, equation 

(S1.32) reduces to a first order ordinary differential equation having as solution:

v (t )=v0 e
− t
τ v +(u+τ v (g−

∇P
ρ c

)) (1−e
−t
τv ) , (S1.34)

where v0 is an initial particle velocity vector. The effective force, FGPD, needed to get from the 

velocity at time t 0 to that a DEM time step, ∆ t , later is:

FGPD (t 0 )=
m
∆ t (v (t0+∆ t ) − v (t 0 )), (S1.35)

Setting v0=v (t ) in Eq. (S1.34), FGPD becomes:

FGPD=
m
∆t (u (t )+τ v (g−

∇P (t )

ρ p
)− v (t ))(1− e

− ∆t
τv ), (S1.36)

We implemented Eq. (S1.36) instead of MFIX’s classical evaluations of the gravitational (Eq. S1.9),

pressure and drag forces (Eq. S1.24), and left unchanged the computations of the contact forces and

of the averaging of the drag forces exerted by the particles on the fluid.
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S1.B Scaling of the numerical parameters against magmatic systems

Table S1a compares the range of physical parameters and dimensionless numbers used in the

simulation against the ranges that may be encountered in natural magmatic systems. 

Parameter Range in simulations Range estimated in nature

ρi (kg m-3) 2500 2200 – 2600 

ρh (kg m-3) 2150 – 2550 2100 – 2600 

ρc (kg m-3) 3300 2600 – 3500 

ρbh (kg m-3) 2886 – 3012 2456 – 3140 

Winj (m) 0.1 0,01 – 10 

Uinj (m s-1) 6.228 × 10-5 – 4.25 10-7 – 10 

dp (m) 0.0045 – 0.0055 0.00001 – 0.05 

ηi (Pa s) 1 0.1 – 1000 

ηh (Pa s) 1 – 100 1 – 1 × 104 

Rei 0.0155 – 1062.5 2.2 × 10-10 – 2.6 × 104

Rep 7 × 10-4 – 58.44 2.2 × 10-13 – 1300 

Atm -10-2 – 7.5 × 10-2 -8.3 × 10-2 – 8.6 × 10-2 

Atb -9.3 × 10-2 – -7.2 × 10-2  -1.8 × 10-1 – 2.8 × 10-2

Table S1a: Comparison of the range of physical parameters used in the simulations and the one

encountered in natural magmatic systems. The bulk Atwood numbers are computed assuming that

the intruder is crystal-free. 

S1.C Model validation

S1.C.a Ability of the model to capture the mixing between two miscible fluids

To ensure  that  the  numerical  model  is  able  to  capture  the  interaction  and possible  mixing

between two miscible  fluids,  we reproduced  experiments  involving  two miscible  fluids  having

distinct physical properties (density and viscosity). 

We reproduced first the experiment from Séon et al. (2007). The experiment was performed in

a tube filled with two miscible fluids having the same viscosity and different densities. The denser

fluid was located at the top half of the tube and the lighter one at the bottom half. The tube is then

tilted by a certain angle from the vertical. The experiment started once the gate separating the two

fluids was opened. Séon et al. (2007) identified two regimes they called “diffusive spreading”, in

which the respective concentrations of the two fluids tend to a median value following a classic

diffusion  law,  and  “Non-diffusive  spreading”,  in  which  the  mixing  between  the  two  fluids  is

dominated by interface deformation due to a combination of Rayleigh-Taylor (at  initiation) and

Kelvin-Helmholtz (during flowage) instabilities (Fig S1a). If our implementation of two fluids (Eq.

S1.5-1.8) is subject to excessive numerical diffusion, or incorrectly represents buoyancy forces the
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fluids exert of each other, we expect that the numerical runs cannot capture the difference between

these two regimes.

 We performed one numerical experiment for each regime using the same fluid properties and

tilt  angle as  those used by the authors.  Figure S1b displays snapshots  of  the simulation in  the

“diffuse spreading” regime. Simulation shows a good transverse mixing between the two fluids as

expected from the experiment. Figure S1c shows snapshots of the second simulation standing in the

“non-diffuse spreading” regime. Here, the simulation presents a poor lateral mixing between the

two fluids that is dominated by the diffusion of the local concentrations of Ch and Ci towards 0.5.

This successful reproduction of the two regimes validates the ability of the model to capture the

interaction  and   mixing  between  two  miscible  fluids  having  different  densities  but  the  same

viscosity.

To ensure that the model captures properly the dynamics of two miscible fluids having distinct

densities and viscosities, we reproduced a series of 8 experiments performed by Snyder & Tait

(1995). Experiment setup consists in a 100-cm long, 40-cm hight, and 30-cm wide tank filled with a

host fluid in which another fluid is injected through a slot having a width of 2 cm. The injected fluid

is denser and less viscous than the host one. We used the same domain size, fluid properties, and

injection flux as the authors in their experiments (Table S1b). Based on the experimental results, the

theoretical current height is (Snyder and Tait, 1995):

h (t )=1.8(
ηi t Q inj

2

‖g‖( ρi− ρh ) )
1
5
, (S1.37)

where Qinj is the injection flux, and g the magnitude of the gravitational acceleration. As equation

S1.37  depends  on  time,  we  compared  the  theoretical  and  modeled  current  heights  at  a  given

dimensionless time, t’, defined as:

t '=
W inj

U inj
, (S1.38)

where Winj is the injection width, and Uinj is the superficial injection velocity. At t’, the theoretical

current height is:

h (t ' )=1.8(
ηi t ' U inj

W inj W
2
‖g‖( ρi − ρh ) )

1
5, (S1.39)

where W is the tank width. The current velocity, Ufront, may be predicted as (Snyder and Tait, 1998) :

U front=
d l
dt

=0,43(‖g‖( ρ i− ρh )Qinj
3

ηh
)

1
3
. (S1.40)
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We compared the current height above the inlet at a given time,  t’=50, at which the gravity

currents were well  developed in our simulations.  In  the simulations,  the current  velocities  also

evolved  with  time.  In  order  to  compare  the  numerical  and  theoretical  velocities,  we  used  the

average current front velocity measured during the simulation. 

Figure  S1d  displays  the  comparison  of  the  theoretical  and  modeled  current  heights  and

velocities. All simulations show good agreement between simulated currents and those predicted

from the experiments. In the experiments, flow front instabilities occurred. Whether with (main

text) or without (this Supplementary material) particles, we never observed such instabilities in our

simulations. This absence most likely results from the size of the fluid cells, which were too large to

initiate the Rayleigh-Taylor instability of the 1–2 cell-thick host liquid film trapped underneath the

injected  current.  Despite  tour  obstinately  stable  flow  fronts,  the  good  match  in  current

characteristics between the numerical experiments and theory shows that the model is able to model

the gravity currents dynamics of two miscible fluids of contrasted densities and viscosities.

Figure S1a:  Regime diagram of the dynamics of two miscible fluids having different densities

(reproduced from Séon et al, 2007). Each black square represents an experiment. Its color depends

on the flow regime observed. The black color indicates that the experiment was in the diffusive

spreading regime and a white  color  indicates  that  the  experiment  was characterized  by a  non-

diffusive spreading regime. The two red squares locate the two simulations we performed. The

dashed line delineates the transition between the two regimes. 
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Figure S1b: Snapshots of the numerical simulation reproducing the diffuse regime in Séon et al,

(2007). The simulation is performed in 2D domain measuring 50 by 2 cm. The domain is tilted by

20° from the vertical. The color depends on the local concentration between the two fluids. The

fluid in blue has a density of 1000 kg m-3  and the one in red a density of 1020 kg.m-3. Both fluids

have a dynamic viscosity of 10-3 Pa s.
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Figure S1c: Snapshots of the numerical simulation reproducing the non-diffuse regime in Séon et

al, (2007). The numerical domain and fluids are the same as in Fig. S1b. The domain is tilted by 80°

from the vertical

Run Experiment n° ρi (kg m ³) ⁻ ρh (kg m ³) ⁻ ηi (Pa s) ηh (Pa s) Qinj (m³ s ¹)⁻ Uinj (m s ¹)⁻ t at t’=50 (s) h at t’=50 (cm) Ufront (m s ¹)⁻ h obs (cm) u_front obs

1 5 1024 1000 0.083 10.3 9.39 10-5 1.57 10-2 60 5.35 2.52 10-3 5.22 3.64 10-3

2 1 1051 1000 0.33 10.3 3.57 10-5 5.95 10-3 160 3.80 1.70 10-3 3.64 2.01 10-3

3 7 1025 1000 1.8 27 7.97 10-6 1.38 10-3 750 3.7 3.58 10-4 3.96 4.20 10-4

4 10 1011 1000 2.3 40 1.60 10-5 2.67 10-3 370 5.81 3.80 10-4 6.37 5.16 10-3

5 41 1428 1401 0.26 5 2.81 10-5 4.68 10-3 210 3.58 1.49 10-3 3.43 1.58 10-3

6 39 1012 1000 0.05 0.19 9.63 10-5 1.61 10-2 60 2.79 7.70 10-3 2.42 7.83 10-3

7 40 1012 1000 0.05 0.19 1.49 10-4 2.48 10-2 40 3.07 1.03 10-2 2.92 1.06 10-2

8 24 1051 1001 1.2 2.1 3.12 10-5 5.2 10-3 190 2.72 2.62 10-3 3.19 2.22 10-3

Table S1b: List of the experiment reproduced numerically and associated physical parameters. The

dimensionless  time  t’ was  computed  using  Eq.  S1.38.  The  current  height  and  velocity  were
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estimated using the relationships given in Snyder and Tait (1995), and Snyder and Tait (1998) (Eqs

S1.39–40). 

Figure  S1d:  Comparison  of  theoretical  and  modeled  gravity  currents.  [A] Comparison  of  the

theoretical  (Eq. S1.39) and modeled current height.  Heights  were measured in simulations at  a

dimensionless  time t’=50 (Eq.  S1.38)  above the inlet.  The dashed line indicates,  perfect  match

between theoretical and modeled current height. Each point corresponds to a simulation. The error

on the measurement of the current height is taken as ± half a cell size.  [B] Same as (A) for the

comparison  of  the  theoretical  (Eq.  S1.40)  and  modeled  current  velocity.  The  error  on  the

measurement is ± the ratio of half the cell size and the time intervals at which the current lengths

were measured.

S1.C Spatial resolution of the melt

The fluid grid resolution greatly affects CFD-DEM simulations and can have a larger impact

than the drag law used (Beetstra et  al.,  2007) as it  controls at  which scale the particle volume

fraction is computed in the fluid cells and its spatial standard deviation. Volk et al. (2018), showed

that the error against experimental data is minimized when the grid size is between 2 and 6 times

larger than the Sauter mean diameter of the particles (dpSauter =  (∫dp³/∫dp²)).  In our case with 3

distinct but close diameters, the Sauter mean diameter is almost equal to the median diameter used.

Bellow the critical  cell size (dx=2 dp),  the assumption made in unresolved CFD-DEM that the

medium can be considered as a continuum becomes invalid, the solid volume fraction becoming
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more heterogeneous and highly dependent on the position of each particle. For lower grid resolution

than the optimal one, the difference against experimental results diverges as the cell size reduces

(Volk et al., 2018). On the contrary, when resolution of the fluid grid become larger than 6 dp,  the

error against experiments increases with the gird size, as the model become unable to capture the

spatial fluctuation of the drag force. 

The  comparison  between  fully  resolved  models  and  CFD-DEM  has  been  performed  by

Esteghamatian et al. (2018, 2017). Esteghamatian et al. (2017) showed that CFD-DEM models are

able to capture fairly well the macroscopic behavior of particle-rich flows such as the particle bed

height and pressure drop between the inlet and top of the bed. At a smaller scale, however, the CFD-

DEM approach is no able to properly capture the local microstructure and the fluctuation in the

velocity of the particles observed with fully-resolved models, especially in the transverse direction.

This also decreases the magnitude of the contact forces between the particles. As expected, the fluid

velocity field is smoother when using a CFD-DEM approach, resulting in the absence of fluctuation

in  the  fluid  velocity  field  at  the  particle  scale.  Esteghamatian  et  al.  (2018)  proposed to  add a

stochastic fluctuating term in the drag law. As demonstrated by the authors, this approach tends to

make  the  CFD-DEM  simulations  closer  to  the  fully  resolved  cases.  This  approach,  however,

requires a calibration against fully-resolved simulations, which are very costly. One can expect that

when Re << 1, the characteristic length of the fluid are much larger than the size of the particles and

fluctuations in the fluid flow field at the particles scale become negligible. Under this assumption,

the CFD-DEM approach is thus likely to provide results very close to fully-resolved one. 
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S1.D Equations

This Supplementary Information includes two tables summarizing the equation system solved

in our numerical simulations (Tables S1c–S1d).

Table S1c: List of the equations implemented in the CFD-DEM model
Equation names Equations Ref.

Mass conservation
∂ (1−Φ )

∂ t
+∇ ∙ ( (1− Φ) u )=0 1

Momentum 
conservation ρ f ( ∂

∂ t
( (1−Φ ) u )+∇ ∙ ( (1 −Φ ) u⊗ u ))=∇ ∙ (σ v )+(1 −Φ ) ρ f g+I fs

1

Stress tensor σ f=P δij+
2
3

ηtr (ϵ f ) δij+2 η ϵ f
1

Euler velocity 
integration v ( k ) (t +∆ t )=v ( k ) (t )+∆ t

FGPD
(k ) (t )+∑

l=1

N l
(k )

(FC
n ( k ,l ) (t )+FC

t (k , l) (t ) )

m(k )

Eq. 
(4.4)

Euler displacement 
integration X ( k )

(t+∆ t )=X ( k )
(t )+∆ t v ( k )

(t+∆ t ) 2

Euler rotation 
integration ω( k ) ( t+∆ t )=ω( k ) ( t )+∆ t

∑
l=1

N l
(k )

TC
(k , l)

I (k )

2

Normal contact force Fc
n (i , j)

=− kn
( i , j ) δn

(i , j )ηc
( i, j )

+ηn
(i , j) V S

(i , j ) 2  5

Tangential contact force Fc
T (i , j)

=− k t
( i , j ) δt

( i , j )
+ηt

( i , j ) (V S
( i , j ) − (V S

( i , j ) . η c
( i , j ) ) ηc

( i , j ) ) 2  5

Collisional torque T c
(i , j )=

d p
(i) −δ n

(i , j)

2
F c

t ( i , j ) 2

normal spring (Hertzian
model) k n

(i , j)
=

4
3

E (i ) E( j )√R eff
(i , j)

E( j) (1− σ ( i)2 )+E(i ) (1 − σ ( j)2 )
δn

(i , j )
1
2 2

tangential spring 
(Hertzian model) k t

(i , j)
=

16
3

G (i ) G( j )√Reff
(i , j)

G( j) (2− σ ( i) )+G(i ) (2− σ ( j) )
‖δt

( i , j)‖
1
2 2

Elastic modulus G=
E

2 (1+σ )
2

Normal damping 
coefficient ηn

( i , j )
=

2√meff
(i , j ) kn

( i , j )|ln en|

√π2
+ln 2en

δ n
(i , j)

1
4 2  5

Tangential damping 
coefficient ηt

( i , j )
=

2√meff
(i , j ) k t

( i , j )|ln e t|

√π2
+ln 2e t

‖δ t‖
(i , j)

1
4 2  5

effective radius Reff
( i, j )

=
2 (d|p (i )

+dp
( j ) )

d p
(i) d p

( j)

2

Effective mass meff
(i , j )

=
m (i )

+m ( j )

m (i )m ( j)
2

Solids/Fluid momentum 
exchange on REV I fs=

1
ν∑ ( β ( π

6
d p

3)
(1−Φ )

(u − v ) K ν ( X , X f )) 2
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Equation names Equations Ref.

Drag forces (for the 
fluid) FD

( k )
=−∇P( π

6
d p

( k )3)+
β fs

( k )

(1− (1−Φ ) ) (
π
6

d p
( k )3)(u− v ( k) ) 2

Local fluid/solid 
momentum transfer

β fs
(k )
={

3
4

C D
(k ) ρf (1−Φ )Φ‖u − v ( k )‖

dp
( k )

(1− Φ )
− 2.65

   if Φ ≤0.2

150Φ2 η
(1−Φ ) dp

(k )2
+

1.75 ρf Φ‖u − v ( k )‖

d p
(k )

             if Φf >0.2

3  4

Drag coefficient CD
(k )
={

24

Re(k ) (1+0.15 Re( k )0.687 )
          if Re(k )

<1000

0.44                                       if Re( k )≥ 1000

3  4

Particle Gravity-Drag-
Pressure force FGPD=

m
∆t (u+τ v (g−

∇P
ρp

)− v )(1− e
−∆ t

τ v ) Eq. (4.5)

Reynolds number Re( k )
=

d p
( k )‖u − v ( k )‖ρ f

η
3

1  Syamlal et al., (1993)
²  Garg et al., (2010)
3  Benyahia et al., (2012)
4  Gidaspow, (1986)
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Table S1d: Symbols used in Table S1c
Symbol Definition

CD
(k )  Drag coefficient of the kth particle

d p
(i )  ith particle diameter

en
 Particle normal restitution coefficient

e t
 Particle tangential restitution coefficient

E( i)  ith particle Young modulus

FC
n ( k , l)  Normal contact force between kth particle and its lth neighbor

FC
t ( k , l)   Tangential contact forces between kth particle and its lth neighbor 

FD
( k )  Drag force on kth particle 

g  Gravitational vector

G ( k )  kth particle shear moduli 

I fs
 Fluid-solid momentum exchange 

I (k )  kth particle moment of inertia 

K REM  Generic kernel to determine the influence of a particle located at X ( k )on the REV

k n
(i , j)  Normal spring coefficient between ith and jth particles contact 

k t
(i , j)  Tangential spring coefficient between ith and jth particles contact 

l  Neighbors index

m (k )  kth particle mass

meff
(i , j )  ith and jth particles effective mass

N l
( k )  Number of neighbors of the kth particle

N k
 Number of particles

P  Fluid pressure 

REV  Representative elementary volume

Re( k )  ith particle Reynolds number

Reff
( i, j )  ith and jth particles effective radius

TC
( k , l)  Contact torque between kth particle and its lth neighbor

u  Fluid velocity vector 

v ( k )  kth particle velocity vector 

X ( k )  kth particle position

β fs
(k )  kth particle – fluid momentum transfer coefficient

V S
( i , j )  Normal relative velocity between ith and jth particles

δij
 Kronecker tensor

δ n
(i , j)  Normal overlap between ith and jth particles

δt
( i , j )  Tangential displacement during the contact between ith and jth particles contact

ϵ f
 Fluid strain rate tensor

η  Fluid viscosity

ηc
( i , j )  Normal vector between  between ith and jth particles

ηn
( i , j )  Normal damping coefficient  between ith and jth particles

ηt
( i , j )  Tangential damping coefficient between ith and jth particles

ν  Domain volume 

ρ f
 Fluid density

σ (i)  ith particle Poisson coefficient
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σ f
Fluid stress tensor

Φ Particle volume fraction

ω ( k )  kth particle rotation vector 

Supplementary Information 2:

This supplementary information presents an updated derivation of the minimum fluidization

velocity compared to those used in the literature.

The onset of fluidization of a crystal bed occurs when the upward drag force exerted by the

injected fluid exceed its net weight.  Shi et  al. (1984) proposed a formula to predict the minimum

fluidization velocity of a random packed bed due to a localized injection of fluid. These authors

made the assumption that the fluid velocity is only vertical and uniformly distributed on horizontal

cross-sectional area (Fig. S2a). The total upward drag force is computed with the Ergun’s formula

(Ergun, 1952) for  a  bed  fluidized  uniformly.  Later,  Cui  et  al.  (2014)  adapted  this  formula  by

considering the fluid velocity uniform along a semi-circular cross sectional area. Here, we modify

the approach of Cui et al. (2014) to predict the minimum fluidization velocity in the experimental

apparatus geometry because the original derivation incorrectly assumed the distance between the

injection point and center of the inlet, r0 , and the boundaries of the integral in their Eq. (2.13). 

The total upward drag force applied by the inlet on the particle bed is computed as:

FD= ∫
r 0

H +r0

( A U r+BU r
2
)S (r ) dr, (S2.1)

where r0  correspond of the vertical coordinates of the bottom and H+r0 is the position of the top of

the particle bed. The variable r corresponds to the radial distance from a hypothetic injection point

(Fig. S2a). A and B are given by Ergun (1952):

A=150
ϕ2

(1−ϕ )
3

ηf

d p
2 ,  (S2.2)

B=1.75
ϕ

(1− ϕ )
3

ρ f

d p
.  (S2.3)

S (r ) represents the area of the curved surface on which the fluid velocity is  uniform, and it  is

computed as a function of r as:

S (r )=2α (r )W l. (S2.4)

U r is the fluid velocity at a radial distance r. U r may be computed by considering that the injected

flux is conserved through the particle bed height, which yields:

Qinj=U r S (r ), (S2.5)

and, with (S4):
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U r=
Qinj

2α (r+r0 ) W l
 (S2.6)

Substituting Eqs. (S2.6) and (S2.4) into Eq. (S2.1) yields:

F=A Qinj H 0+
B Qinj

2

2 α W l

ln (
H 0+2r 0

2r 0
) (S2.7)

In this geometry, the net weight of the bed, W , is given by:

W =[ (r0+H 0)
2
tan α −

W inj r0

2 ]W l ( ρp− ρf ) g ϕ.  (S2.8)

Introducing r0=W inj /(2 tan α ), the onset of fluidization occurred when F=W , which yields:

A Qinj H0+
B Qinj

2

2 α W l

ln(
2 H 0 tan α

W inj

+1)− [ H 0 (W inj+H0 tan α ) ] W l ( ρ p− ρf ) g ϕ=0 (S2.9)

Figure  S2b  displays  comparison  of  the  minimum fluidization  velocities  computed  with

formulas from Ergun (1952),  Shi et  al. (1984),  Cui et  al., (2014), and Eq. (S2.9), function of the

particle bed height. It shows that Eq (S2.9) is closer to the result predicted with the formulas from

Ergun (1952) and Shi et al. (1984). The incorrect formula derived by Cui et al., (2014) results in the

significant overestimations of the minimum fluidization velocity. 

Figure S2a:  Conceptual  framework to  derive  the minimum fluidization velocity.  The top
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draw is a view from the top. The bottom draw is a front view. On both draws, the thick black lines

represent the boundaries of the volume of the particle  bed,  which is  fluidized.  The red dashed

curves indicate the cross sectional areas where the magnitude of the fluid velocity is uniform.  The

arrows  represent  the  direction  of  the  fluid  flow.  The  black  dots  represent  the  positions  of  the

theoretical  injections  point  and  intersections  between  the  cross  sectional  areas  where  the  fluid

velocity is uniform and the vertical boundary of the fluidized particle bed.

 

Figure S2b: Comparison of the minimum fluidization velocities function of the initial particle

bed height. The curves represent the minimum fluidization velocities derived by authors and the one

given here.
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Supplementary Information 3: 

This  supplementary  information  presents  the  derivation  of  the  maximum height  of  the

intrusion as a function of time for end member scenarios.

We consider two end-members for the growth of the intrusion volume (vertical or radial).

The first end member considers the vertical ascent (dyking) of the intruded melt above the inlet over

a width, W inj. In this case, the ratio, H❑, between Hmax and the initial particle bed thickness, Hbed (

H*
=Hmax / H bed), reads:

H*
=t*. (S3.1)

In the case of radial growth, we consider as spherical intrusion having a unknown radius, R,

and fed by an inlet of width W inj (Fig. S3a). The inlet truncates the sphere at a vertical distance, h,

which depends on both R and W inj. The objective is to compute the distance from the inlet to the top

of the sphere, H , knowing the area A and injection width W inj. The total area, Atot, of the sphere is

the sum of the area A, where the intruded fluid is present and the truncated area B as:

Atot=A+B. (S3.2)

The area A depends on injection velocity and time. The area Atot may be expressed using the sphere

radius R. Replacing A and Atot  in Eq. (S3.2) and rearranging yields:

π R2
=W inj H bed t *

+AB. (S3.3)

The area B may be approximated with a good accuracy as (Harris and Stöcker, 1998, pp 92-93):

AB≈
2
3

W inj h+
h3

2W inj
 . (S3.4)

Inserting Eq. (S3.4) in Eq. (S3.3) gives:

0=W inj H bed t *
+

2
3

W inj h+
h3

2W inj

− π R2
. (S3.5)

Equation (S3.5) contains two unknowns,  R and  h,  which can be related to each other tanks to

geometry:

 0=
W inj

2

4
+ (R − h )

2− R2. (S3.6)

Using that H=2 R −h, Hmax may be computed as a function of t * by solving Equations (S3.5‒S3.6).
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Figure  S3a: Schematics  of  the  geometrical  setup.  The  drawing  represents  a  section

perpendicular to the intrusion. The area covered by the injected melt is in gray and the area outside

the tank is red.
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Supplementary information 4:

This supplementary figure displays the magnitude of the vorticity.



Figure S4a: Magnitude of the vorticity. Simulations correspond to the ones represented in Fig.

3 at the same time steps. The green curves indicate the injected melt contour.
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Supplementary information 5: 

This  supplementary  section  present  the  physical  properties  of  the  end  member  magmas

involved in the 15 eruptions considered in this study.  In cases where mixing was so preeminent that

only mixed products were erupted (e.g.,  Unzen),  pre-mixing host  characteristics,  including crystal

content,  were determined using indirect  evidences  such as  crystal  rims in  disequilibrium with the

surrounding melt. Viscosities and densities of intruder magmas were sometimes directly characterized

because they were erupted  (e.g.,  Pinatubo; Pallister et al., 1996) or approximated using petrological

inferences.  The software Conflow (Mastin, 2002) was used to calculate densities and viscosities when

necessary.

All host magmas are mushes except two complex cases treated separately in our analysis. The

first  case is  the Bronze Age eruption of Santorini volcano known as the Minoan eruption.  In one

scenario, the reservoir that hosted the Minoan eruption products had 10–20 vol% crystals (Cadoux et

al., 2014). In others, more complex scenarios have been proposed (Druitt, 2014; Flaherty et al., 2018;

Martin et al.,  2010). In one, the main rhyodacite would have instead acted as the intruder into an

adjacent mushy, mafic reservoir (Druitt, 2014). For simplicity, we only reported the possibility of a

mushy mafic  reservoir.  The 1912 eruption  at  Katmai–Novarupta  is  a  case  where  the  roles  of  the

intruder and host might be reversed (e.g. Coombs and Gardner, 2001; Eichelberger and Izbekov, 2000;

Hammer et al., 2002; Singer et al., 2016). We reported the scenario in which the most crystal-rich

components  (andesite  and  dacite)  are  the  hosts  and  the  nearly  aphyric  rhyolite  is  the  intruder

(Eichelberger and Izbekov, 2000), as well as the scenario in which the host is composed of a zoned

chamber and the intruder is a basaltic andesite (Singer et al., 2016).

There is a last complex case that is analyzed individually although its reservoir unambiguously

contained a mush. Two mutually exclusive intrusion scenarios have indeed been proposed to explain

the 1991–1995 eruption of Unzen volcano. In both scenarios, the host magma was a phenocryst-rich,
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low-temperature rhyolite mush and the intruder was a nearly aphyric, high-temperature magma (Holtz

et al., 2004; Nakamura, 1995). The composition of the intruder, which left only cryptic indications of

its  presence  such  as  reverse  zoning  of  the  outer  rims  of  hornblende,  plagioclase  and  magnetite

(Nakamura, 1995), could have been either andesitic (Holtz et al., 2004), or basaltic  (Browne et al.,

2006).
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Table S5a: Host properties from natural cases (volcano names are followed by the starting year of the eruption). Minerals abbreviations are 
plagioclase (Plag), clinopyroxene (CPx), orthopyroxene (OPx), pyroxene (Px), and hornblende (Hb). Only the main mineral phases were taken 
into account and numbers in parenthesis are mineral volume proportions. Bulk densities were calculated with a plagioclase density of 2570 kg/
m3 and a density of 3200 kg/m3 for all other minerals. Bulk viscosities were calculated as ηl (1− φ /0.6 )

−2.5 ∙ 0.6, where ηl is melt viscosity and φ is 
crystal volume fraction, except for the Minoan scenario where the largest bulk viscosity was capped at 1010 Pa s because the higher bound of φ is
>0.6. Abbreviations sat. and usat. mean saturated and undersaturated, respectively. Not used (n.u.) implies that melt densities and/or viscosities 
were directly given in the reference(s) corresponding to that case.

CASE Name
Xtal

(vol%)
Minerals

Melt SiO2

(wt%)
Melt H2O

(wt%)
Melt density

(kg/m3)
Melt viscosity

(Pa s)
T

(°C)
P

(MPa)
Re
f

Unzen 1991 Dacite 34-35 Plag (0.8) Cpx (0.2) 75 8 2229-2239 1.3×104-1.4×104 775 300 1
Vesuvius -79 White Pumice 31.6-40 Plag 53-57 sat. 2218-2300 2.4×103-3.0×103 875-900 150 b 2

Guadeloupe 1530 Andesite 48.3-57.5 Plag (0.8) Px (0.2) 73-75 5.5-6 2189-2203 1.2×104-2.5×104 825-875 135-200 3
Karymsky 1996 Andesite 25-32 Plag (0.8) Px (0.2) 63 sat. 2395-2378 a 8.9×103-13×103 a 1023-1057 200 b 4
Ruapehu 1995 Andesite 24.5-42 Plag (0.66) Px (0.33) 62-70 1-1.5 2380-2438 2.9×104-4.7×104 920-1030 40 5
Katmai 1912 –

scenario 1
Andesite 30-45 Plag (0.8) Px (0.2) 67.6-74 usat-sat. 2274-2284 1.2×104-1.3×104 920-970 75-120

6
Dacite 30-45 Plag (0.8) Px (0.2) 79.1 usat-sat. 2189-2220 2.0×105-8.1×105 850-910 60-25

Katmai 1912 –
scenario 2

Andesite 30 Plag (0.8) Px (0.2) 67.6 usat. 2274 1.2×104 920 75
7

Rhyolite 2 Plag 77 4 2225 1.7×106 790 40
Komagatake 1640 White Pumice 25-43.1 n.u. 74.7-76.1 3-4 2280-2300 4.4×104-2.9×105 a 970-980 n.u. 8
Montserrat 1995 Andesite 35-45 Plag 75-80 4.8 2171-2160 3.7×104-8.4×104 835-880 105-155 9
Redoubt 1990 Dacite 24-32 Plag 78.5-81 4 2164-2174 3.4×104-3.8×104 840-950 100 10

Minoan Andesite 55-100 Plag (0.8) CPx (0.2) 71-77 sat. b 2213-2231 5.9×105-1.3×107 700-820 50 11
SW Trident 1953 Dacite 37-39 Plag (0.8) Px (0.2) 75 3.6 2190-2200 4.5×104-4.9×104 890 90 12

Dutton 1989 Dacite 35 Plag (0.8) OPx (0.2) 78 sat. 2481-2491 1.4×105-1.5×105 865 200 b 13

Pinatubo 1991
White Pumice 47 Plag (0.8) Hb (0.2) 76 6-6.5 2166 5.4×104 750-800 155-200

14
Tan Pumice 15-26 Plag (0.8) Hb (0.2) 73 6-6.5 2194 5.6×104 750-800 155-200

a Calculated from bulk values given in the reference(s).
b Assumed value.
c References are: 1) Holtz et al. (2005), Vetere et al. (2008)(andesite intruder), Browne et al. (2006)(basalt intruder); 2) Cioni et al. (1995), Scaillet et al. (2008); 3) Pichavant 
et al. (2018); 4) Izbekov et al. (2002), Izbekov et al. (2004), Eichelberger and Izbekov (2000); 5) Nakagawa et al. (1999), Nakagawa et al. (2002), Kilgour et al. (2013); 6) 
Eichelberger and Izbekov (2000), Coombs and Gardner (2001); 7) Hammer et al. (2002), Singer et al. (2016); 8) Takahashi and Nakagawa (2013); 9) Barclay et al. (1998), 
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Murphy et al. (2000), Couch et al. (2001), Humphreys et al. (2010), Plail et al. (2018); 10) Wolf and Eichelbeger (1997), Nye et al. (1994), Swanson et al. (1994); 11)Druitt et
al. (1999) 12)  Coombs et al. (2000), Coombs et al. (2002); 13) Miller et al. (1999); 14) Pallister et al. (1992), Pallister et al. (1996), Bernard et al. (1996).

Table S5b: Intruder properties from natural cases. Minerals abbreviations are plagioclase (Plag), clinopyroxene (CPx),, pyroxene (Px), 
hornblende (Hb), olivine (Ol), and Augite (Aug). Abbreviations and references are the same as in Table S5a.

CASE Name
Xtal

(vol%)
Minerals

Melt SiO2

(wt%)
Melt H2O

(wt%)
Melt density

(kg/m3)
Melt viscosity

(Pa s)
T

(°C)
P

(MPa)

Unzen 1991
Andesite 0-10 Plag b 62-64 4 2184-2194 3.2×102-3.2×102 1030-1130 300

Basalt 0-5 Ol 50 sat. b 2351-2418 2.3-10 1030-1200 b 300 b

Vesuvius -79 K-rich basalt 0-20 Plag 50-52 usat. 2485-2441 13-16 1050-1140 150 b

Guadeloupe 1530 Basalt 0-12 Plag 50-53 5-6 2436-2420 5.4-9.3 975-1025 200 b

Karymsky 1996 Basalt 20 Plag 52 sat. 2545 a 22-54 1080-1115 200 b

Ruapehu 1995 High-T magma 0-10 Plag b 54.2-57.7 1-1.5 2530-2640 10-102 1100 b -1200 b 40
Katmai 1912 –

scenario 1
Rhyolite 2 Plag 77 4 2225-2172 7.5×103-1.7×106 790-850 40-100

Katmai 1912 –
scenario 2

Andesite 30-45 Plag (0.8) Px (0.2) 67.6-74 usat.-sat. 2274-2284 1.2×104-1.3×104 920-970 75-120

Komagatake
1640

Basalt 0 57 n.u. 2500 b-2540 5.0×103-1.0×103 a 1150 n.u.

Montserrat 1995 Mafic recharge 2-4.5 Plag 52-71 sat. 2400-2500 10-102 975-1196 105-155
Redoubt 1990 Andesite 24-32 Plag 64.5-66 4 2228-2238 1.6×104-1.8×104 840-950 100

Minoan Rhyodacite 10-20 Plag 73.5-74 5-6 2213-2173 1.7×104-1.4×105 845-860 200-250
SW Trident 1953 Andesite 28-43 Plag 74-63 3.5 2150-2295 8.3×102-104 990-1010 90

Dutton 1989 Mafic recharge 10-30 Plag 74 sat. 2546-2556 80-88 1080-1180 200 b

Pinatubo 1991 Basalt 19-25
Plag (0.75)

Hb+Aug+Ol (0.25)
73.2 2-3 usat. 2159-2169 6.1×102-6.7×102 1250 250

a Calculated from bulk values given in the reference(s).
b Assumed value.
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